准备3台虚拟机, 系统是RHEL64服务版.
1) 每台机器配置如下:
$ cat /etc/hosts
# zookeeper hostnames:
192.168.8.182 zk1
192.168.8.183 zk2
192.168.8.184 zk3
2) 每台机器上安装jdk, zookeeper, kafka, 配置如下:
$ vi /etc/profile
# jdk, zookeeper, kafka
export KAFKA_HOME=/usr/local/lib/kafka/kafka_2.9.2-0.8.11
export ZK_HOME=/usr/local/lib/zookeeper/zookeeper-3.4.6
export CLASSPATH=.:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar
export PATH=$JAVA_HOME/bin:$JAVA_HOME/jre/bin:$KAFKA_HOME/bin:$ZK_HOME/bin:$PATH
3) 每台机器上运行:
$ source /etc/profile
$ mkdir -p /var/lib/zookeeper
$ cd $ZK_HOME/conf
$ cp zoo_sample.cfg zoo.cfg
$ vi zoo.cfg
dataDir=/var/lib/zookeeper
# the port at which the clients will connect
clientPort=2181
# zookeeper cluster
server.1=zk1:2888:3888
server.2=zk2:2888:3888
server.3=zk3:2888:3888
4) 每台机器上生成myid:
zk1:
$ echo "1" > /var/lib/zookeeper/myid
zk2:
$ echo "2" > /var/lib/zookeeper/myid
zk3:
$ echo "3" > /var/lib/zookeeper/myid
5) 每台机器上运行setup关闭防火墙
Firewall:
[ ] enabled
6) 每台机器上启动zookeeper:
$ zkServer.sh start
查看状态:
$ zkServer.sh status
1)下载KAFKA
$ wget http://apache.fayea.com/apache-mirror/kafka/0.8.1.1/kafka_2.9.2-0.8.1.1.tgz
安装和配置参考上一篇文章:
http://blog.csdn.net/ubuntu64fan/article/details/26678877
2)配置$KAFKA_HOME/config/server.properties
我们安装3个broker,分别在3个vm上:zk1,zk2,zk3:
zk1:
$ vi /etc/sysconfig/network
NETWORKING=yes
HOSTNAME=zk1
$ vi $KAFKA_HOME/config/server.properties
broker.id=0
port=9092
host.name=zk1
advertised.host.name=zk1
...
num.partitions=2
...
zookeeper.contact=zk1:2181,zk2:2181,zk3:2181
zk2:
$ vi /etc/sysconfig/network
NETWORKING=yes
HOSTNAME=zk2
$ vi $KAFKA_HOME/config/server.properties
broker.id=1
port=9092
host.name=zk2
advertised.host.name=zk2
...
num.partitions=2
...
zookeeper.contact=zk1:2181,zk2:2181,zk3:2181
zk3:
$ vi /etc/sysconfig/network
NETWORKING=yes
HOSTNAME=zk3
$ vi $KAFKA_HOME/config/server.properties
broker.id=2
port=9092
host.name=zk3
advertised.host.name=zk3
...
num.partitions=2
...
zookeeper.contact=zk1:2181,zk2:2181,zk3:2181
3)启动zookeeper服务, 在zk1,zk2,zk3上分别运行:
$ zkServer.sh start
4)启动kafka服务, 在zk1,zk2,zk3上分别运行:
$ kafka-server-start.sh $KAFKA_HOME/config/server.properties
5) 新建一个TOPIC(replication-factor=num of brokers)
$ kafka-topics.sh --create --topic test --replication-factor 3 --partitions 2 --zookeeper zk1:2181
6)假设我们在zk2上,开一个终端,发送消息至kafka(zk2模拟producer)
$ kafka-console-producer.sh --broker-list zk1:9092 --sync --topic test
在发送消息的终端输入:Hello Kafka
7)假设我们在zk3上,开一个终端,显示消息的消费(zk3模拟consumer)
$ kafka-console-consumer.sh --zookeeper zk1:2181 --topic test --from-beginning
在消费消息的终端显示:Hello Kafka
项目准备开发
项目基于maven构建,不得不说kafka java客户端实在是太糟糕了;构建环境会遇到很多麻烦。建议参考如下pom.xml;其中各个依赖包必须版本协调一致。如果kafka client的版
本和kafka server的版本不一致,将会有很多异常,比如"broker id not exists"等;因为kafka从0.7升级到0.8之后(正名为2.8.0),client与server通讯的protocol已经改变.
Xml代码
- <dependencies>
- <dependency>
- <groupId>log4j</groupId>
- <artifactId>log4j</artifactId>
- <version>1.2.14</version>
- </dependency>
- <dependency>
- <groupId>org.apache.kafka</groupId>
- <artifactId>kafka_2.8.2</artifactId>
- <version>0.8.0</version>
- <exclusions>
- <exclusion>
- <groupId>log4j</groupId>
- <artifactId>log4j</artifactId>
- </exclusion>
- </exclusions>
- </dependency>
- <dependency>
- <groupId>org.scala-lang</groupId>
- <artifactId>scala-library</artifactId>
- <version>2.8.2</version>
- </dependency>
- <dependency>
- <groupId>com.yammer.metrics</groupId>
- <artifactId>metrics-core</artifactId>
- <version>2.2.0</version>
- </dependency>
- <dependency>
- <groupId>com.101tec</groupId>
- <artifactId>zkclient</artifactId>
- <version>0.3</version>
- </dependency>
- </dependencies>
Producer端代码
1) producer.properties文件:此文件放在/resources目录下
Xml代码
- #partitioner.class=
- ##broker列表可以为kafka server的子集,因为producer需要从broker中获取metadata
- ##尽管每个broker都可以提供metadata,此处还是建议,将所有broker都列举出来
- ##此值,我们可以在spring中注入过来
- ##metadata.broker.list=127.0.0.1:9092,127.0.0.1:9093
- ##,127.0.0.1:9093
- ##同步,建议为async
- producer.type=sync
- compression.codec=0
- serializer.class=kafka.serializer.StringEncoder
- ##在producer.type=async时有效
- #batch.num.messages=100
2) KafkaProducerClient.java代码样例
Java代码
- import java.util.ArrayList;
- import java.util.Collection;
- import java.util.List;
- import java.util.Properties;
-
- import kafka.javaapi.producer.Producer;
- import kafka.producer.KeyedMessage;
- import kafka.producer.ProducerConfig;
-
- public class KafkaProducerClient {
-
- private Producer<String, String> inner;
-
- private String brokerList;//for metadata discovery,spring setter
- private String location = "kafka-producer.properties";//spring setter
-
- private String defaultTopic;//spring setter
-
- public void setBrokerList(String brokerList) {
- this.brokerList = brokerList;
- }
-
- public void setLocation(String location) {
- this.location = location;
- }
-
- public void setDefaultTopic(String defaultTopic) {
- this.defaultTopic = defaultTopic;
- }
-
- public KafkaProducerClient(){}
-
- public void init() throws Exception {
- Properties properties = new Properties();
- properties.load(Thread.currentThread().getContextClassLoader().getResourceAsStream(location));
-
-
- if(brokerList != null) {
- properties.put("metadata.broker.list", brokerList);
- }
-
- ProducerConfig config = new ProducerConfig(properties);
- inner = new Producer<String, String>(config);
- }
-
- public void send(String message){
- send(defaultTopic,message);
- }
-
- public void send(Collection<String> messages){
- send(defaultTopic,messages);
- }
-
- public void send(String topicName, String message) {
- if (topicName == null || message == null) {
- return;
- }
- KeyedMessage<String, String> km = new KeyedMessage<String, String>(topicName,message);
- inner.send(km);
- }
-
- public void send(String topicName, Collection<String> messages) {
- if (topicName == null || messages == null) {
- return;
- }
- if (messages.isEmpty()) {
- return;
- }
- List<KeyedMessage<String, String>> kms = new ArrayList<KeyedMessage<String, String>>();
- int i= 0;
- for (String entry : messages) {
- KeyedMessage<String, String> km = new KeyedMessage<String, String>(topicName,entry);
- kms.add(km);
- i++;
- if(i % 20 == 0){
- inner.send(kms);
- kms.clear();
- }
- }
-
- if(!kms.isEmpty()){
- inner.send(kms);
- }
- }
-
- public void close() {
- inner.close();
- }
-
- /**
- * @param args
- */
- public static void main(String[] args) {
- KafkaProducerClient producer = null;
- try {
- producer = new KafkaProducerClient();
- //producer.setBrokerList("");
- int i = 0;
- while (true) {
- producer.send("test-topic", "this is a sample" + i);
- i++;
- Thread.sleep(2000);
- }
- } catch (Exception e) {
- e.printStackTrace();
- } finally {
- if (producer != null) {
- producer.close();
- }
- }
-
- }
-
- }
Consumer端
1) consumer.properties:文件位于/resources目录下
Xml代码
- ## 此值可以配置,也可以通过spring注入
- ##zookeeper.connect=127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183
- ##,127.0.0.1:2182,127.0.0.1:2183
- # timeout in ms for connecting to zookeeper
- zookeeper.connectiontimeout.ms=1000000
- #consumer group id
- group.id=test-group
- #consumer timeout
- #consumer.timeout.ms=5000
- auto.commit.enable=true
- auto.commit.interval.ms=60000
2) KafkaConsumerClient.java代码样例
Java代码
- package com.test.kafka;
- import java.nio.ByteBuffer;
- import java.nio.CharBuffer;
- import java.nio.charset.Charset;
- import java.util.HashMap;
- import java.util.List;
- import java.util.Map;
- import java.util.Properties;
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
-
- import kafka.consumer.Consumer;
- import kafka.consumer.ConsumerConfig;
- import kafka.consumer.ConsumerIterator;
- import kafka.consumer.KafkaStream;
- import kafka.javaapi.consumer.ConsumerConnector;
- import kafka.message.Message;
- import kafka.message.MessageAndMetadata;
-
- public class KafkaConsumerClient {
-
- private String groupid; //can be setting by spring
- private String zkConnect;//can be setting by spring
- private String location = "kafka-consumer.properties";//配置文件位置
- private String topic;
- private int partitionsNum = 1;
- private MessageExecutor executor; //message listener
- private ExecutorService threadPool;
-
- private ConsumerConnector connector;
-
- private Charset charset = Charset.forName("utf8");
-
- public void setGroupid(String groupid) {
- this.groupid = groupid;
- }
-
- public void setZkConnect(String zkConnect) {
- this.zkConnect = zkConnect;
- }
-
- public void setLocation(String location) {
- this.location = location;
- }
-
- public void setTopic(String topic) {
- this.topic = topic;
- }
-
- public void setPartitionsNum(int partitionsNum) {
- this.partitionsNum = partitionsNum;
- }
-
- public void setExecutor(MessageExecutor executor) {
- this.executor = executor;
- }
-
- public KafkaConsumerClient() {}
-
- //init consumer,and start connection and listener
- public void init() throws Exception {
- if(executor == null){
- throw new RuntimeException("KafkaConsumer,exectuor cant be null!");
- }
- Properties properties = new Properties();
- properties.load(Thread.currentThread().getContextClassLoader().getResourceAsStream(location));
-
- if(groupid != null){
- properties.put("groupid", groupid);
- }
- if(zkConnect != null){
- properties.put("zookeeper.connect", zkConnect);
- }
- ConsumerConfig config = new ConsumerConfig(properties);
-
- connector = Consumer.createJavaConsumerConnector(config);
- Map<String, Integer> topics = new HashMap<String, Integer>();
- topics.put(topic, partitionsNum);
- Map<String, List<KafkaStream<byte[], byte[]>>> streams = connector.createMessageStreams(topics);
- List<KafkaStream<byte[], byte[]>> partitions = streams.get(topic);
- threadPool = Executors.newFixedThreadPool(partitionsNum * 2);
-
- //start
- for (KafkaStream<byte[], byte[]> partition : partitions) {
- threadPool.execute(new MessageRunner(partition));
- }
- }
-
- public void close() {
- try {
- threadPool.shutdownNow();
- } catch (Exception e) {
- //
- } finally {
- connector.shutdown();
- }
-
- }
-
- class MessageRunner implements Runnable {
- private KafkaStream<byte[], byte[]> partition;
-
- MessageRunner(KafkaStream<byte[], byte[]> partition) {
- this.partition = partition;
- }
-
- public void run() {
- ConsumerIterator<byte[], byte[]> it = partition.iterator();
- while (it.hasNext()) {
- // connector.commitOffsets();手动提交offset,当autocommit.enable=false时使用
- MessageAndMetadata<byte[], byte[]> item = it.next();
- try{
- executor.execute(new String(item.message(),charset));// UTF-8,注意异常
- }catch(Exception e){
- //
- }
- }
- }
-
- public String getContent(Message message){
- ByteBuffer buffer = message.payload();
- if (buffer.remaining() == 0) {
- return null;
- }
- CharBuffer charBuffer = charset.decode(buffer);
- return charBuffer.toString();
- }
- }
-
- public static interface MessageExecutor {
-
- public void execute(String message);
- }
-
- /**
- * @param args
- */
- public static void main(String[] args) {
- KafkaConsumerClient consumer = null;
- try {
- MessageExecutor executor = new MessageExecutor() {
-
- public void execute(String message) {
- System.out.println(message);
- }
- };
- consumer = new KafkaConsumerClient();
-
- consumer.setTopic("test-topic");
- consumer.setPartitionsNum(2);
- consumer.setExecutor(executor);
- consumer.init();
- } catch (Exception e) {
- e.printStackTrace();
- } finally {
- if(consumer != null){
- consumer.close();
- }
- }
-
- }
-
- }
需要提醒的是,上述LogConsumer类中,没有太多的关注异常情况,必须在MessageExecutor.execute()方法中抛出异常时的情况.
在测试时,建议优先启动consumer,然后再启动producer,这样可以实时的观测到最新的消息。