讲LSM树之前,需要提下三种基本的存储引擎,这样才能清楚LSM树的由来:
通过以上的分析,应该知道LSM树的由来了,LSM树的设计思想非常朴素:将对数据的修改增量保持在内存中,达到指定的大小限制后将这些修改操作批量写入磁盘,不过读取的时候稍微麻烦,需要合并磁盘中历史数据和内存中最近修改操作,所以写入性能大大提升,读取时可能需要先看是否命中内存,否则需要访问较多的磁盘文件。极端的说,基于LSM树实现的HBase的写性能比Mysql高了一个数量级,读性能低了一个数量级。
LSM树原理把一棵大树拆分成N棵小树,它首先写入内存中,随着小树越来越大,内存中的小树会flush到磁盘中,磁盘中的树定期可以做merge操作,合并成一棵大树,以优化读性能。
以上这些大概就是HBase存储的设计主要思想,这里分别对应说明下:
关于LSM Tree,对于最简单的二层LSM Tree而言,内存中的数据和磁盘你中的数据merge操作,如下图
图来自lsm论文
lsm tree,理论上,可以是内存中树的一部分和磁盘中第一层树做merge,对于磁盘中的树直接做update操作有可能会破坏物理block的连续性,但是实际应用中,一般lsm有多层,当磁盘中的小树合并成一个大树的时候,可以重新排好顺序,使得block连续,优化读性能。
hbase在实现中,是把整个内存在一定阈值后,flush到disk中,形成一个file,这个file的存储也就是一个小的B+树,因为hbase一般是部署在hdfs上,hdfs不支持对文件的update操作,所以hbase这么整体内存flush,而不是和磁盘中的小树merge update,这个设计也就能讲通了。内存flush到磁盘上的小树,定期也会合并成一个大树。整体上hbase就是用了lsm tree的思路。