问题导读
1.hbase的BulkLoad有哪些优点?
2.hbase的BulkLoad这种方式有哪些限制?
声明: 若要转载, 请标明出处.
前提: 在对于大量的数据导入到HBase中, 如果一条一条进行插入, 则太耗时了, 所以可以先采用MapReduce生成HFile文件, 然后使用BulkLoad导入HBase中.
引用:
一、这种方式有很多的优点:
1. 如果我们一次性入库hbase巨量数据,处理速度慢不说,还特别占用Region资源, 一个比较高效便捷的方法就是使用 “Bulk Loading”方法,即HBase提供的HFileOutputFormat类。
2. 它是利用hbase的数据信息按照特定格式存储在hdfs内这一原理,直接生成这种hdfs内存储的数据格式文件,然后上传至合适位置,即完成巨量数据快速入库的办法。配合mapreduce完成,高效便捷,而且不占用region资源,增添负载。
二、这种方式也有很大的限制:
1. 仅适合初次数据导入,即表内数据为空,或者每次入库表内都无数据的情况。
2. HBase集群与Hadoop集群为同一集群,即HBase所基于的HDFS为生成HFile的MR的集群.
本文代码采用Eclipse编辑器(Linux环境下)
一. 网上的大部分代码都是或多或少有问题, 比如他们或者不是运行在集群上,或者运行时有问题, 后面会对产生哪些问题进行说明, 先不说这么多了,先上代码吧.
二. 源代码(注: 作者亲测运行在集群上成功,集群基于Ubuntu12.04, Hadoop-1.2.1与HBase-0.98,使用自带的ZooKeeper)
1. MapReduce生产HFile文件
首先, 需要导入的数据的表格(BigClientEnergyInfo表)有四个列族, 每个列族下面有一些列, 这些信息都使用常量配置类CONSTANT_HADOOP与CONSTANT_HBASE进行说明,如下:
- package cn.hey.loaddata2hbase;
-
- /**
- *
- * @author HeYong
- * @version 1
- * @time 2014-05-09
- *
- */
- public class CONSTANT_HADOOP {
-
- //大客户表BigClientEnergyInfo的HFile生成Job名字
- public static final String BigClientEnergyInfo_JobName = "BigClientEnergyInfo_HFileGenerator_Job";
- //大客户表BigClientEnergyInfo的输入原始文本信息的HDFS路径
- public static final String BigClientEnergyInfo_inDir = "hdfs://node1:49000/user/hadoop/input/BigClientEnergyInfo/";
- //大客户表BigClientEnergyInfo的HFile文件的输出HDFS路径
- public static final String BigClientEnergyInfo_HFile_outDir = "hdfs://node1:49000/user/hadoop/output/BigClientEnergyInfo/";
-
- //说明: 因为在创建HBase表的时候,默认只有一个Region,只有等到这个Region的大小超过一定的阈值之后,才会进行split
- //所以为了利用完全分布式加快生成HFile和导入HBase中以及数据负载均衡,所以需要在创建表的时候预先进行分区,
- //而进行分区时要利用startKey与endKey进行rowKey区间划分(因为导入HBase中,需要rowKey整体有序),所以在导入之前,自己先写一个MapReduce的Job求最小与最大的rowKey
- //即startKey与endKey
- //获取最大rowKey与最小rowKey的Job名字
- public static final String GetMaxAndMinRowKey_JobName = "GetMaxAndMinRowKey_Job";
- //大客户表BigClientEnergyInfo的输入原始文本信息的HDFS路径
- public static final String GetMaxAndMinRowKey_inDir = "hdfs://node1:49000/user/hadoop/input/BigClientEnergyInfo/";
- //最大rowKey与最小rowKey的输出HDFS路径
- public static final String GetMaxAndMinRowKey_outDir = "hdfs://node1:49000/user/hadoop/output/GetMaxAndMinRowKey/";
- }
复制代码
- package cn.hey.loaddata2hbase;
-
- import java.util.LinkedList;
- import java.util.List;
-
- import org.apache.hadoop.hbase.client.HTable;
-
- /**
- *
- * @author HeYong
- * @version 1
- * @time 2014-05-09
- *
- */
-
- public class CONSTANT_HBASE {
-
- public static final long timeStamp = System.currentTimeMillis();
-
- //表集合
- public static List<HTable> htables = new LinkedList<HTable>();
- public static final String[] TableNames = {"BigClientEnergyInfo"};
-
- /**
- * 大客户表信息
- */
- //列族信息
- public static final String[] TB0_FamilyNames = {"DateTime","MeterEnergy","ObjInfo","ClientInfo"};
- //第1个列族中的列
- public static final String[] TB0_FN0ColNames ={"DATETIME"};
- //第2个列族中的列
- public static final String[] TB0_FN1ColNames ={"DT","OBJ_ID","E0","E1","E2","E3","E4","E5"};
- //第3个列族中的列
- public static final String[] TB0_FN2ColNames ={"STAT_TYPE","CITY_NO","OBJ_ID","OBJ_NAME","LAYER","LAYER_ID","OBJ_TYPE","TYPE_VALUE",
- "TYPE_VALUE_GROUP","SORT","SYS_ID","STATION_NO","FLAG"};
- //第4个列族中的列
- public static final String[] TB0_FN3ColNames ={"CITY_NO","CONSUMERID","CONSUMERNAME","CUSTOMERTYPE","USERSTATUS","USERADDR","ZONEID","INDUSTRYTYPE",
- "LINKMAN","LINKPHONE","USETYPE","LINEID"};
- //列族信息集合
- public static final String[][] TB0_FNColNames={TB0_FN0ColNames,TB0_FN1ColNames,TB0_FN2ColNames,TB0_FN3ColNames};
- //每个列族的列索引
- public static final int[] FNColIndex={1,2,10,23};
-
- }
复制代码
接着, 使用创建一个生成四个列族的HFile的MapRed Job,每个列族一个Job, 源代码如下(类BigClientEnergyInfoHFileGenerator):
其中有三点需要特别注意:
(1)
- //特别注意: 一定要设置,不然会报cannot read partitioner file错误
- conf.set("fs.default.name","node1:49000");
复制代码
(2)
- //特别注意: 一定要设置,不然不会运行在集群上
- conf.set("mapred.job.tracker","node1:49001");
复制代码
(3)
- //特别注意: 对相关Class文件以及依赖的jar包(如HBase的jar,)进行打包,这是运行在集群上必须要做的一步,不然集群找不到相关的Mapper等类文件
- File jarpath;
- try {
- jarpath = JarTools.makeJar("bin");
- conf.set("mapred.jar", jarpath.toString());
- } catch (Exception e) {
- logger.error("进行jar打包出错!");
- e.printStackTrace();
- return;
- }
复制代码
特别注意: 因为我这里是对工程下的bin目录里面的内容进行打包,所以需要把依赖的jar包先放入bin文件夹中, 再Bulid Path->Add to Build Path, 不然会出现在运行时, 依赖的包中的类找不到, 如HBase包中的ImmutableBytesWritable类等. 当然你也可以放在别的目录下,然后进行打包, 反正需要将相关Class文件与依赖的jar包进行打包. 这里自己写了一个JarTools类进行对指定文件夹下面的内容进行打包
- package cn.hey.loaddata2hbase;
-
- import java.io.File;
- import java.io.IOException;
- import java.net.URI;
- import java.util.ArrayList;
- import java.util.Iterator;
- import java.util.List;
-
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.fs.FileSystem;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.hbase.KeyValue;
- import org.apache.hadoop.hbase.client.HTable;
- import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
- import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat;
- import org.apache.hadoop.hbase.mapreduce.KeyValueSortReducer;
- import org.apache.hadoop.hbase.util.Bytes;
- import org.apache.hadoop.io.LongWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.mapreduce.Mapper;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
- import org.apache.log4j.LogManager;
- import org.apache.log4j.Logger;
-
- import cn.hey.file.FileOperation;
- import cn.hey.hbase.HbaseOperation;
- import cn.hey.utils.JarTools;
-
- /**
- *
- * @author HeYong
- * @version 1
- * @time 2014-05-09
- *
- */
-
- public class BigClientEnergyInfoHFileGenerator {
-
- public static Logger logger = LogManager.getLogger(BigClientEnergyInfoHFileGenerator.class);
- /**
- *
- * @param args 第一个元素表示第几个表,第二个元素表示该表的列族个数
- * @throws IOException
- * @throws InterruptedException
- * @throws ClassNotFoundException
- * @throws Exception
- */
- public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException, Exception{
- if(args.length<2){
- logger.error("参数个数不对!");
- return;
- }
- int tableIndex = Integer.parseInt(args[0]);
- int familyNum = Integer.parseInt(args[1]);
- int index = 0;
- long beginTime=0,endTime=0;
- while(index<familyNum){
- beginTime = System.currentTimeMillis();
- GeneratorJob(tableIndex,index);
- endTime = System.currentTimeMillis();
- FileOperation.append2File(System.getProperty("user.dir")+File.separator+"file"+File.separator+"runTime1.txt",(((endTime-beginTime)/(1.0*60*1000)))+"\n");
- ++index;
- }
- FileOperation.append2File(System.getProperty("user.dir")+File.separator+"file"+File.separator+"runTime1.txt","-----------------------------");
- }
-
- public static class HFileGenerateMapper extends
- Mapper<LongWritable, Text, ImmutableBytesWritable, KeyValue> {
- private static int familyIndex = 0;
- private static Configuration conf = null;
- @Override
- protected void setup(Context context) throws IOException,
- InterruptedException {
- conf = context.getConfiguration();
- familyIndex = conf.getInt("familyIndex",0);
- }
- @Override
- protected void map(LongWritable key, Text value, Context context)
- throws IOException, InterruptedException {
- ImmutableBytesWritable rowkey = new ImmutableBytesWritable(
- value.toString().split(",")[0].getBytes());
- List<KeyValue> list = null;
- list = createKeyValue(value.toString());
- Iterator<KeyValue> it = list.iterator();
- while (it.hasNext()) {
- KeyValue kv = new KeyValue();
- kv = it.next();
- if (kv != null) {
- context.write(rowkey, kv);
- }
- }
-
- }
- private List<KeyValue> createKeyValue(String str) {
- List<KeyValue> list = new ArrayList<KeyValue>(CONSTANT_HBASE.TB0_FNColNames[familyIndex].length);
- String[] values = str.toString().split(",");
- String[] qualifiersName = CONSTANT_HBASE.TB0_FNColNames[familyIndex];
- for (int i = 0; i < qualifiersName.length; i++) {
- String rowkey = values[0];
- String family = CONSTANT_HBASE.TB0_FamilyNames[familyIndex];
- String qualifier = qualifiersName[i];
- String value_str = values[i+CONSTANT_HBASE.FNColIndex[familyIndex]];
-
- KeyValue kv = new KeyValue(Bytes.toBytes(rowkey),
- Bytes.toBytes(family), Bytes.toBytes(qualifier),
- CONSTANT_HBASE.timeStamp, Bytes.toBytes(value_str));
- list.add(kv);
- }
- return list;
- }
- }
-
- //测试Mapper,用来进行测试的, 后面没有用到
- public static class HFileMapper extends Mapper<LongWritable, Text,ImmutableBytesWritable,KeyValue> {
-
- protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
- String[] values = value.toString().split(" ", -1);
-
-
- byte[] rkey = Bytes.toBytes(values[0]); //rowkey
- byte[] family = Bytes.toBytes("info"); //列族
- byte[] column = Bytes.toBytes("name"); //列
- byte[] val = Bytes.toBytes(values[1]); //值
- //Put tmpPut=new Put(subject);
- ImmutableBytesWritable rowKey = new ImmutableBytesWritable(rkey);
-
- KeyValue kvProtocol = new KeyValue(rkey , family, column, val);
- context.write(rowKey, kvProtocol );
- }
-
- }
- /**
- *
- * @param tableIndex 表示第几个表(从0开始),具体参见CONSTANT_HBASE类
- * @param familyIndex 表示该表的第几个列族(从0开始),具体参见CONSTANT_HBASE类
- * @throws IOException
- */
- public static void GeneratorJob(int tableIndex,int familyIndex) throws IOException{
- Configuration conf = HbaseOperation.HBASE_CONFIG;
- //特别注意: 一定要设置,不然会爆cannot read partitioner file错误
- conf.set("fs.default.name","node1:49000");
- //特别注意: 一定要设置,不然不会运行在集群上
- conf.set("mapred.job.tracker","node1:49001");
- //特别注意: 对相关Class以及依赖的jar包(如HBase的jar)进行打包,这是运行在集群上必须要做的一步,不然集群找不到相关的Mapper等类文件
- File jarpath;
- try {
- jarpath = JarTools.makeJar("bin");
- conf.set("mapred.jar", jarpath.toString());
- } catch (Exception e) {
- logger.error("进行jar打包出错!");
- e.printStackTrace();
- return;
- }
-
- //设置job
- Job job = new Job(conf, CONSTANT_HADOOP.BigClientEnergyInfo_JobName);
- job.setJarByClass(BigClientEnergyInfoHFileGenerator.class);
-
- //设置Map任务输出Key-Value类型,一定要为该类型,Value可以改为HBase的Put类型
- job.setOutputKeyClass(ImmutableBytesWritable.class);
- job.setOutputValueClass(KeyValue.class);
-
- //设置Mapper与Reducer类
- job.setMapperClass(HFileGenerateMapper.class);
- job.setReducerClass(KeyValueSortReducer.class);
- // 不需要设置,系统会根据相关信息调用 HFileOutputFormat
- // job.setOutputFormatClass(HFileOutputFormat.class);
- // 不需要设置, 系统会根据表的Region数创建多少Reducer
- // job.setNumReduceTasks(4);
- // job.setPartitionerClass(org.apache.hadoop.hbase.mapreduce.SimpleTotalOrderPartitioner.class);
-
- HTable table = new HTable(conf, CONSTANT_HBASE.TableNames[tableIndex]);
- HFileOutputFormat.configureIncrementalLoad(job, table);
-
- //设置数据输入输出目录
- String str_inPath = CONSTANT_HADOOP.BigClientEnergyInfo_inDir;
- String str_outPath = CONSTANT_HADOOP.BigClientEnergyInfo_HFile_outDir+CONSTANT_HBASE.TB0_FamilyNames[familyIndex];
-
- //创建HDFS对象
- FileSystem fs = FileSystem.get(URI.create(str_inPath),conf);
- // 如果输出路径存在就先删掉,因为不允许输出路径事先存在
- Path outPath = new Path(str_outPath);
- if (fs.exists(outPath))
- fs.delete(outPath, true);
- FileInputFormat.addInputPath(job, new Path(str_inPath));
- FileOutputFormat.setOutputPath(job, new Path(str_outPath));
-
- try {
- job.waitForCompletion(true);
- } catch (InterruptedException e) {
- logger.info(CONSTANT_HADOOP.BigClientEnergyInfo_JobName+" 任务运行出错!");
- e.printStackTrace();
- } catch (ClassNotFoundException e) {
- logger.info(CONSTANT_HADOOP.BigClientEnergyInfo_JobName+" 任务运行出错!");
- e.printStackTrace();
- }
- }
-
- }
复制代码
生成HFile程序说明:
①. 最终输出结果,无论是map还是reduce,输出部分key和value的类型必须是: < ImmutableBytesWritable, KeyValue>或者< ImmutableBytesWritable, Put>。
②. 最终输出部分,Value类型是KeyValue 或Put,对应的Sorter分别是KeyValueSortReducer或PutSortReducer。
③. MR例子中job.setOutputFormatClass(HFileOutputFormat.class); HFileOutputFormat只适合一次对单列族组织成HFile文件。好像最新的版本可以多个列族.
④. MR例子中HFileOutputFormat.configureIncrementalLoad(job, table);自动对job进行配置。TotalOrderPartitioner是需要先对key进行整体排序,然后划分到每个reduce中,保证每一个reducer中的的key最小最大值区间范围,是不会有交集的。因为入库到HBase的时候,作为一个整体的Region,key是绝对有序的。
⑤. MR例子中最后生成HFile存储在HDFS上,输出路径下的子目录是各个列族。如果对HFile进行入库HBase,相当于move HFile到HBase的Region中,HFile子目录的列族内容没有了。
然后, 使用BulkLoad工具将HFile文件导入HBase中, 源代码如下(类BigClientEnergyInfoHFileLoader):
- package cn.hey.loaddata2hbase;
-
- import java.io.File;
-
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles;
- import org.apache.log4j.LogManager;
- import org.apache.log4j.Logger;
-
- import cn.hey.file.FileOperation;
- import cn.hey.hbase.HbaseOperation;
-
- /**
- *
- * @author HeYong
- * @version 1
- * @time 2014-05-09
- *
- */
-
- public class BigClientEnergyInfoHFileLoader {
-
- public static Logger logger = LogManager.getLogger(HFileLoader.class);
- public static void main(String[] args) throws Exception {
-
-
- if(args.length<2){
- logger.error("参数个数不对!");
- return;
- }
- LoadIncrementalHFiles loader = new LoadIncrementalHFiles(
- HbaseOperation.HBASE_CONFIG);
-
- int tableIndex = Integer.parseInt(args[0]);
- int familyNum = Integer.parseInt(args[1]);
- int i = 0;
- long beginTime=0,endTime=0;
- while(i<familyNum){
- beginTime = System.currentTimeMillis();
- String str_outPath = CONSTANT_HADOOP.str_outPath+CONSTANT_HBASE.TB0_FamilyNames[i];
- loader.doBulkLoad(new Path(str_outPath),CONSTANT_HBASE.htables.get(tableIndex));
- endTime = System.currentTimeMillis();
- //将用时相关写入文件
- FileOperation.append2File(System.getProperty("user.dir")+File.separator+"file"+File.separator+"runTime2.txt",(((endTime-beginTime)/(1.0*60*1000)))+"\n");
- ++i;
- }
- FileOperation.append2File(System.getProperty("user.dir")+File.separator+"file"+File.separator+"runTime2.txt","------------------------");
- }
-
-
- }
复制代码
最后,使用一个Driver类, 先创建HTable,然后调用上面的两个类,源代码如下(类BigClientEnergyInfoLoadDriver):
说明: 因为在创建HBase表的时候,默认只有一个Region,只有等到这个Region的大小超过一定的阈值之后,才会进行split, 所以为了利用完全分布式加快生成HFile和导入HBase中以及数据负载均衡,所以需要在创建表的时候预先创建分区,可以查阅相关资料(关于HBase调优的资料), 而进行分区时要利用startKey与endKey进行rowKey区间划分(因为导入HBase中,需要rowKey整体有序),所以在导入之前,自己先写一个MapReduce的Job求最小与最大的rowKey, 即startKey与endKey.
- package cn.hey.loaddata2hbase;
-
- import java.io.IOException;
- import java.util.ArrayList;
- import java.util.List;
-
- import org.apache.hadoop.hbase.client.HTable;
- import org.apache.log4j.LogManager;
- import org.apache.log4j.Logger;
-
- import cn.hey.hbase.HbaseOperation;
- import cn.hey.hdfs.HDFSOperation;
-
- /**
- *
- * @author HeYong
- * @version 1
- * @time 2014-05-09
- *
- */
-
- public class BigClientEnergyInfoLoadDriver {
-
- protected static Logger logger = LogManager.getLogger(BigClientEnergyInfoLoadDriver.class);
- /**
- * @param args
- * @throws ClassNotFoundException
- * @throws InterruptedException
- * @throws IOException
- */
- public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
- //首先删除在CONSTANT_HBASE类中的第0个表,即BigClientEnergyInfo表
- dropHTable(0);
- /**
- * 说明: 因为在创建HBase表的时候,默认只有一个Region,只有等到这个Region的大小超过一定的阈值之后,才会进行split,
- * 所以为了利用完全分布式加快生成HFile和导入HBase中以及数据负载均衡,所以需要在创建表的时候预先创建分区,可以查阅相关资料(关于HBase调优的资料),
- * 而进行分区时要利用startKey与endKey进行rowKey区间划分(因为导入HBase中,需要rowKey整体有序),所以在导入之前,自己先写一个MapReduce的Job求最小与最大的rowKey,
- * 即startKey与endKey.
- *
- */
- //调用GetMaxAndMinRowKeyDriver.获取startKey与endKey
- GetMaxAndMinRowKeyDriver.main(null);
- //读取startKey与endKey,readHDFSFile方法即读取指定HDFS文件中的内容,每一行作为一个字符串
- List<String> strList = HDFSOperation.readHDFSFile(CONSTANT_HADOOP.GetMaxAndMinRowKey_outDir+"part-r-00000");
- if(strList==null||strList.size()<2){
- logger.info("startKey与endKey读取失败!");
- return;
- }
- String startKey = strList.get(0);
- String endKey = strList.get(1);
- if(startKey==null||"".equals(startKey)||endKey==null||"".equals(endKey)){
- logger.info("startKey或endKey为空!");
- return;
- }
- args = new String[2];
- //第0个表,表的索引,即表BigClientEnergyInfo
- args[0]="0";
- //该表所拥有的列族的数目
- args[1]= ""+CONSTANT_HBASE.TB0_FamilyNames.length;
- //创建第0个表,即大客户表
- boolean flag = false;
- try {
- //创建表时预先创建的Region个数
- int numPreRegions = 7;
- flag = createHTable(0,startKey,endKey,numPreRegions);
- } catch (IOException e1) {
- e1.printStackTrace();
- }
- if(flag){
- //产生该表的HFile文件
- try {
- BigClientEnergyInfoHFileGenerator.main(args);
- } catch (IOException e) {
- e.printStackTrace();
- } catch (InterruptedException e) {
- e.printStackTrace();
- } catch (ClassNotFoundException e) {
- e.printStackTrace();
- } catch (Exception e) {
- e.printStackTrace();
- }
-
- //将HFile导入HBase中
- try {
- HFileLoader.main(args);
- } catch (Exception e) {
- e.printStackTrace();
- }
- }
- }
- /**
- *
- * @param index 第几个表
- * @param startKey 创建预先分区的startKey
- * @param endKey 创建预先分区的endKey
- * @param numRegions 创建预先分区个数
- * @return 是否创建成功
- * @throws IOException
- */
- public static boolean createHTable(int index,String startKey,String endKey,int numRegions) throws IOException{
- if(index<0||index>=CONSTANT_HBASE.TableNames.length){
- logger.error("表下标越界!");
- return false;
- }
- if(startKey==null||"".equals(startKey)){
- logger.error("startKey不能为空!");
- return false;
- }
- if(endKey==null||"".equals(endKey)){
- logger.error("endKey不能为空!");
- return false;
- }
- if(numRegions<0){
- logger.error("分区个数<0!");
- return false;
- }
- List<String> list = new ArrayList<String>();
- String tableName = CONSTANT_HBASE.TableNames[index];
- for(String familyName:CONSTANT_HBASE.TB0_FamilyNames){
- list.add(familyName);
- }
- if(HbaseOperation.createTable(tableName, list,startKey,endKey,numRegions)){
- logger.info("创建HTable :"+tableName+"成功");
- }
- HTable table = new HTable(HbaseOperation.HBASE_CONFIG,tableName);
- CONSTANT_HBASE.htables.add(table);
- return true;
- }
- public static void dropHTable(int index){
- String tableName = CONSTANT_HBASE.TableNames[index];
- HbaseOperation.dropTable(tableName);
- }
-
- }
复制代码
- 注: HbaseOperation.createTable方法, 即创建表, HbaseOperation.dropTable方法,即删除表, 源代码如下:
- /**
- * 创建表
- *
- * @param tableName
- * @param family 列族集名称
- * @param String startKey,String endKey,int numRegions 预先分区相关信息
- */
- public static boolean createTable(String tableName,List<String> family,String startKey,String endKey,int numRegions) {
- try {
- hBaseAdmin = new HBaseAdmin(HBASE_CONFIG);
- //如果表已存在,则返回
- if (hBaseAdmin.tableExists(tableName)) {
-
- //hBaseAdmin.disableTable(tableName);
- //hBaseAdmin.deleteTable(tableName);
- logger.info("表: "+tableName+"已经存在!");
- return false;
- }
- HTableDescriptor tableDescriptor = new HTableDescriptor(tableName);
- for(String name:family){
- tableDescriptor.addFamily(new HColumnDescriptor(name));
- }
- hBaseAdmin.createTable(tableDescriptor,Bytes.toBytes(startKey),Bytes.toBytes(endKey),numRegions);
- } catch (MasterNotRunningException e) {
- e.printStackTrace();
- } catch (ZooKeeperConnectionException e) {
- e.printStackTrace();
- } catch (IOException e) {
- e.printStackTrace();
- }
- return true;
- }
- /**
- * 删除一张表
- *
- * @param tableName 表名
- */
- public static void dropTable(String tableName) {
- if(tableName==null||"".equals(tableName)){
- logger.error("表名不能为空!");
- return;
- }
- try {
- hBaseAdmin = new HBaseAdmin(HBASE_CONFIG);
- hBaseAdmin.disableTable(tableName);
- hBaseAdmin.deleteTable(tableName);
- } catch (MasterNotRunningException e) {
- e.printStackTrace();
- } catch (ZooKeeperConnectionException e) {
- e.printStackTrace();
- } catch (IOException e) {
- e.printStackTrace();
- }
-
- }
- 特别注意: 对HBase进行操作时, 在获取HBase conf时, 即public static Configuration HBASE_CONFIG = HBaseConfiguration.create();的时候, 一定要进行如下设置:
- static {
- //设置HMaster
- HBASE_CONFIG.set("hbase.zookeeper.master","node1:60000");
- //设置Zookeeper集群
- HBASE_CONFIG.set("hbase.zookeeper.quorum", "node2,node3,node4,node5,node6,node7,node8");
- }不然会出现RegionServer的Zookeeper连接不上HMaster, 千万要注意.
复制代码
到这里就基本大功告成了. 可以通过node1:50030查看job的运行情况, 通过node1:60010查看HBase的相关情况
|