问题导读
1.spark如何实现列统计汇总?
2.MLlib在本文有哪些作用?
Spark Mllib 统计模块代码结构如下:
1.1 列统计汇总计算每列最大值、最小值、平均值、方差值、L1范数、L2范数。 //读取数据,转换成RDD[Vector]类型 val data_path = "/home/jb-huangmeiling/sample_stat.txt" val data = sc.textFile(data_path).map(_.split("\t")).map(f => f.map(f =>f.toDouble)) val data1 = data.map(f => Vectors.dense(f)) //计算每列最大值、最小值、平均值、方差值、L1范数、L2范数 val stat1 = Statistics.colStats(data1) stat1.max stat1.min stat1.mean stat1.variance stat1.normL1 stat1.normL2
执行结果: 数据
scala> data1.collect res19: Array[org.apache.spark.mllib.linalg.Vector] = Array([1.0,2.0,3.0,4.0,5.0], [6.0,7.0,1.0,5.0,9.0], [3.0,5.0,6.0,3.0,1.0], [3.0,1.0,1.0,5.0,6.0]) scala> stat1.max res20: org.apache.spark.mllib.linalg.Vector = [6.0,7.0,6.0,5.0,9.0] scala> stat1.min res21: org.apache.spark.mllib.linalg.Vector = [1.0,1.0,1.0,3.0,1.0] scala> stat1.mean res22: org.apache.spark.mllib.linalg.Vector = [3.25,3.75,2.75,4.25,5.25] scala> stat1.variance res23: org.apache.spark.mllib.linalg.Vector = [4.25,7.583333333333333,5.583333333333333,0.9166666666666666,10.916666666666666] scala> stat1.normL1 res24: org.apache.spark.mllib.linalg.Vector = [13.0,15.0,11.0,17.0,21.0] scala> stat1.normL2 res25: org.apache.spark.mllib.linalg.Vector = [7.416198487095663,8.888194417315589,6.855654600401044,8.660254037844387,11.958260743101398]
1.2 相关系数Pearson相关系数表达的是两个数值变量的线性相关性, 它一般适用于正态分布。其取值范围是[-1, 1], 当取值为0表示不相关,取值为(0~-1]表示负相关,取值为(0, 1]表示正相关。
Spearman相关系数也用来表达两个变量的相关性,但是它没有Pearson相关系数对变量的分布要求那么严格,另外Spearman相关系数可以更好地用于测度变量的排序关系。其计算公式为:
//计算pearson系数、spearman相关系数 val corr1 = Statistics.corr(data1, "pearson") val corr2 = Statistics.corr(data1, "spearman") val x1 = sc.parallelize(Array(1.0, 2.0, 3.0, 4.0)) val y1 = sc.parallelize(Array(5.0, 6.0, 6.0, 6.0)) val corr3 = Statistics.corr(x1, y1, "pearson") scala> corr1 res6: org.apache.spark.mllib.linalg.Matrix = 1.0 0.7779829610026362 -0.39346431156047523 ... (5 total) 0.7779829610026362 1.0 0.14087521363240252 ... -0.39346431156047523 0.14087521363240252 1.0 ... 0.4644203640128242 -0.09482093118615205 -0.9945577827230707 ... 0.5750122832421579 0.19233705001984078 -0.9286374704669208 ... scala> corr2 res7: org.apache.spark.mllib.linalg.Matrix = 1.0 0.632455532033675 -0.5000000000000001 ... (5 total) 0.632455532033675 1.0 0.10540925533894883 ... -0.5000000000000001 0.10540925533894883 1.0 ... 0.5000000000000001 -0.10540925533894883 -1.0000000000000002 ... 0.6324555320336723 0.20000000000000429 -0.9486832980505085 ... scala> corr3 res8: Double = 0.7745966692414775 1.3 假设检验MLlib当前支持用于判断拟合度或者独立性的Pearson卡方(chi-squared ( χ2) )检验。不同的输入类型决定了是做拟合度检验还是独立性检验。拟合度检验要求输入为Vector, 独立性检验要求输入是Matrix。
//卡方检验 val v1 = Vectors.dense(43.0, 9.0) val v2 = Vectors.dense(44.0, 4.0) val c1 = Statistics.chiSqTest(v1, v2)
执行结果: c1: org.apache.spark.mllib.stat.test.ChiSqTestResult = Chi squared test summary: method: pearson degrees of freedom = 1 statistic = 5.482517482517483 pValue = 0.01920757707591003 Strong presumption against null hypothesis: observed follows the same distribution as expected.. 结果返回:统计量:pearson、自由度:1、值:5.48、概率:0.019。
|