分享

揭开Spark Streaming神秘面纱③ - 动态生成 job


问题导读:

1.JobGenerator中的定时逻辑是什么?
2.为 batch 生成 jobs的流程是什么?
3.jobs的生成过程有哪几步?




JobScheduler有两个重要成员,一是上文介绍的 ReceiverTracker,负责分发 receivers 及源源不断地接收数据;二是本文将要介绍的 JobGenerator,负责定时的生成 jobs 并 checkpoint。
定时逻辑在 JobScheduler 的主构造函数中,会创建 JobGenerator 对象。在 JobGenerator 的主构造函数中,会创建一个定时器:

[mw_shl_code=python,true]
private val timer = new RecurringTimer(clock, ssc.graph.batchDuration.milliseconds,
    longTime => eventLoop.post(GenerateJobs(new Time(longTime))), "JobGenerator")[/mw_shl_code]

该定时器每隔 ssc.graph.batchDuration.milliseconds 会执行一次 eventLoop.post(GenerateJobs(new Time(longTime))) 向 eventLoop 发送 GenerateJobs(new Time(longTime))消息,eventLoop收到消息后会进行这个 batch 对应的 jobs 的生成及提交执行,eventLoop 是一个消息接收处理器。

需要注意的是,timer 在创建之后并不会马上启动,将在 StreamingContext#start() 启动 Streaming Application 时间接调用到 timer.start(restartTime.milliseconds)才启动。

为 batch 生成 jobs

204749-e6cd05d35d7031b9.jpg

eventLoop 在接收到 GenerateJobs(new Time(longTime))消息后的主要处理流程有以上图中三步:

  • 将已接收到的 blocks 分配给 batch
  • 生成该 batch 对应的 jobs
  • 将 jobs 封装成 JobSet 并提交执行

接下来我们就将逐一展开这三步进行分析

将已接受到的 blocks 分配给 batch

204749-c85680875a7557c2.jpg

上图是根据源码画出的为 batch 分配 blocks 的流程图,这里对 『获得 batchTime 各个 InputDStream 未分配的 blocks』作进一步说明:

在文章 『文章链接』 中我们知道了各个 ReceiverInputDStream 对应的 receivers 接收并保存的 blocks 信息会保存在 ReceivedBlockTracker#streamIdToUnallocatedBlockQueues,该成员 key 为 streamId,value 为该 streamId 对应的 InputDStream 已接收保存但尚未分配的 blocks 信息。


所以获取某 InputDStream 未分配的 blocks 只要以该 InputDStream 的 streamId 来从 streamIdToUnallocatedBlockQueues 来 get 就好。获取之后,会清楚该 streamId 对应的value,以保证 block 不会被重复分配。

在实际调用中,为 batchTime 分配 blocks 时,会从streamIdToUnallocatedBlockQueues取出未分配的 blocks 塞进 timeToAllocatedBlocks: mutable.HashMap[Time, AllocatedBlocks] 中,以在之后作为该 batchTime 对应的 RDD 的输入数据。

通过以上步骤,就可以为 batch 的所有 InputDStream 分配 blocks。也就是为 batch 分配了 blocks。

生成该 batch 对应的 jobs

204749-1a1227d30560e8eb.jpg

为指定 batchTime 生成 jobs 的逻辑如上图所示。你可能会疑惑,为什么 DStreamGraph#generateJobs(time: Time)为什么返回 Seq[Job],而不是单个 job。这是因为,在一个 batch 内,可能会有多个 OutputStream 执行了多次 output 操作,每次 output 操作都将产生一个 Job,最终就会产生多个 Jobs。

我们结合上图对执行流程进一步分析。

在DStreamGraph#generateJobs(time: Time)中,对于DStreamGraph成员ArrayBuffer[DStream[_]]的每一项,调用DStream#generateJob(time: Time)来生成这个 outputStream 在该 batchTime 的 job。该生成过程主要有三步:

Step1: 获取该 outputStream 在该 batchTime 对应的 RDD

每个 DStream 实例都有一个 generatedRDDs: HashMap[Time, RDD[T]] 成员,用来保存该 DStream 在每个 batchTime 生成的 RDD,当 DStream#getOrCompute(time: Time)调用时

  • 首先会查看generatedRDDs中是否已经有该 time 对应的 RDD,若有则直接返回
  • 若无,则调用compute(validTime: Time)来生成 RDD,这一步根据每个 InputDStream继承 compute 的实现不同而不同。例如,对于 FileInputDStream,其 compute 实现逻辑如下:
    • 先通过一个 findNewFiles() 方法,找到多个新 file
    • 对每个新 file,都将其作为参数调用 sc.newAPIHadoopFile(file),生成一个 RDD 实例
    • 将 2 中的多个新 file 对应的多个 RDD 实例进行 union,返回一个 union 后的 UnionRDD

Step2: 根据 Step1中得到的 RDD 生成最终 job 要执行的函数 jobFunc


jobFunc定义如下:

[mw_shl_code=python,true]

val jobFunc = () => {
  val emptyFunc = { (iterator: Iterator[T]) => {} }
  context.sparkContext.runJob(rdd, emptyFunc)
}[/mw_shl_code]

可以看到,每个 outputStream 的 output 操作生成的 Job 其实与 RDD action 一样,最终调用 SparkContext#runJob 来提交 RDD DAG 定义的任务

Step3: 根据 Step2中得到的 jobFunc 生成最终要执行的 Job 并返回

Step2中得到了定义 Job 要干嘛的函数-jobFunc,这里便以 jobFunc及 batchTime 生成 Job 实例:

[mw_shl_code=python,true]
Some(new Job(time, jobFunc))[/mw_shl_code]

该Job实例将最终封装在 JobHandler 中被执行

至此,我们搞明白了 JobScheduler 是如何通过一步步调用来动态生成每个 batchTime 的 jobs。下文我们将分析这些动态生成的 jobs 如何被分发及如何执行。



相关文章

揭开Spark Streaming神秘面纱① - DStreamGraph 与 DStream DAG
http://www.aboutyun.com/forum.php?mod=viewthread&tid=17807

揭开Spark Streaming神秘面纱② - ReceiverTracker 与数据导入
http://www.aboutyun.com/forum.php?mod=viewthread&tid=17825

揭开Spark Streaming神秘面纱③ - 动态生成 job

http://www.aboutyun.com/forum.php?mod=viewthread&tid=17826

文/牛肉圆粉不加葱(简书作者)
原文链接:http://www.jianshu.com/p/ee845802921e
著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”。





没找到任何评论,期待你打破沉寂

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

推荐上一条 /2 下一条