问题导读
1.org.apache.spark.mllib.tree.RandomForest.scala中RandomForest里面的train做了什么?
2.DecisionTree.findSplitsBins做了什么?
以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或random forest也是常以其为基础的 决策树算法本身参考之前的blog,其实就是贪婪算法,每次切分使得数据变得最为有序
那么如何来定义有序或无序? 无序,node impurity 对于分类问题,我们可以用熵entropy或Gini来表示信息的无序程度
对于回归问题,我们用方差Variance来表示无序程度,方差越大,说明数据间差异越大 information gain 用于表示,由父节点划分后得到子节点,所带来的impurity的下降,即有序性的增益
MLib决策树的例子 下面直接看个regression的例子,分类的case,差不多,
- import org.apache.spark.mllib.tree.DecisionTree
- import org.apache.spark.mllib.util.MLUtils
-
- // Load and parse the data file.
- // Cache the data since we will use it again to compute training error.
- val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt").cache()
-
- // Train a DecisionTree model.
- // Empty categoricalFeaturesInfo indicates all features are continuous.
- val categoricalFeaturesInfo = Map[Int, Int]()
- val impurity = "variance"
- val maxDepth = 5
- val maxBins = 100
-
- val model = DecisionTree.trainRegressor(data, categoricalFeaturesInfo, impurity,
- maxDepth, maxBins)
-
- // Evaluate model on training instances and compute training error
- val labelsAndPredictions = data.map { point =>
- val prediction = model.predict(point.features)
- (point.label, prediction)
- }
- val trainMSE = labelsAndPredictions.map{ case(v, p) => math.pow((v - p), 2)}.mean()
- println("Training Mean Squared Error = " + trainMSE)
- println("Learned regression tree model:\n" + model)
复制代码
还是比较简单的, 由于是回归,所以impurity的定义为variance
maxDepth,最大树深,设为5
maxBins,最大的划分数
先理解什么是bin,决策树的算法就是对feature的取值不断的进行划分
对于离散的feature,比较简单,如果有m个值,最多 个划分,如果值是有序的,那么就最多m-1个划分
比如年龄feature,有老,中,少3个值,如果无序有 个,即3种划分,老|中,少;老,中|少;老,少|中
但如果是有序的,即按老,中,少的序,那么只有m-1个,即2种划分,老|中,少;老,中|少 对于连续的feature,其实就是进行范围划分,而划分的点就是split,划分出的区间就是bin
对于连续feature,理论上划分点是无数的,但是出于效率我们总要选取合适的划分点
有个比较常用的方法是取出训练集中该feature出现过的值作为划分点,
但对于分布式数据,取出所有的值进行排序也比较费资源,所以可以采取sample的方式
源码分析 首先调用,DecisionTree.trainRegressor,类似调用静态函数(object DecisionTree) org.apache.spark.mllib.tree.DecisionTree.scala - /**
- * Method to train a decision tree model for regression.
- *
- * @param input Training dataset: RDD of [[org.apache.spark.mllib.regression.LabeledPoint]].
- * Labels are real numbers.
- * @param categoricalFeaturesInfo Map storing arity of categorical features.
- * E.g., an entry (n -> k) indicates that feature n is categorical
- * with k categories indexed from 0: {0, 1, ..., k-1}.
- * @param impurity Criterion used for information gain calculation.
- * Supported values: "variance".
- * @param maxDepth Maximum depth of the tree.
- * E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes.
- * (suggested value: 5)
- * @param maxBins maximum number of bins used for splitting features
- * (suggested value: 32)
- * @return DecisionTreeModel that can be used for prediction
- */
- def trainRegressor(
- input: RDD[LabeledPoint],
- categoricalFeaturesInfo: Map[Int, Int],
- impurity: String,
- maxDepth: Int,
- maxBins: Int): DecisionTreeModel = {
- val impurityType = Impurities.fromString(impurity)
- train(input, Regression, impurityType, maxDepth, 0, maxBins, Sort, categoricalFeaturesInfo)
- }
复制代码
调用静态函数train - def train(
- input: RDD[LabeledPoint],
- algo: Algo,
- impurity: Impurity,
- maxDepth: Int,
- numClassesForClassification: Int,
- maxBins: Int,
- quantileCalculationStrategy: QuantileStrategy,
- categoricalFeaturesInfo: Map[Int,Int]): DecisionTreeModel = {
- val strategy = new Strategy(algo, impurity, maxDepth, numClassesForClassification, maxBins,
- quantileCalculationStrategy, categoricalFeaturesInfo)
- new DecisionTree(strategy).train(input)
- }
复制代码
可以看到将所有参数封装到Strategy类,然后初始化DecisionTree类对象,继续调用成员函数train - /**
- * :: Experimental ::
- * A class which implements a decision tree learning algorithm for classification and regression.
- * It supports both continuous and categorical features.
- * @param strategy The configuration parameters for the tree algorithm which specify the type
- * of algorithm (classification, regression, etc.), feature type (continuous,
- * categorical), depth of the tree, quantile calculation strategy, etc.
- */
- @Experimental
- class DecisionTree (private val strategy: Strategy) extends Serializable with Logging {
-
- strategy.assertValid()
-
- /**
- * Method to train a decision tree model over an RDD
- * @param input Training data: RDD of [[org.apache.spark.mllib.regression.LabeledPoint]]
- * @return DecisionTreeModel that can be used for prediction
- */
- def train(input: RDD[LabeledPoint]): DecisionTreeModel = {
- // Note: random seed will not be used since numTrees = 1.
- val rf = new RandomForest(strategy, numTrees = 1, featureSubsetStrategy = "all", seed = 0)
- val rfModel = rf.train(input)
- rfModel.trees(0)
- }
-
- }
复制代码
可以看到,这里DecisionTree的设计是基于RandomForest的特例,即单颗树的RandomForest
所以调用RandomForest.train(),最终因为只有一棵树,所以取trees(0)
org.apache.spark.mllib.tree.RandomForest.scala 重点看下,RandomForest里面的train做了什么? - /**
- * Method to train a decision tree model over an RDD
- * @param input Training data: RDD of [[org.apache.spark.mllib.regression.LabeledPoint]]
- * @return RandomForestModel that can be used for prediction
- */
- def train(input: RDD[LabeledPoint]): RandomForestModel = {
- //1. metadata
- val retaggedInput = input.retag(classOf[LabeledPoint])
- val metadata =
- DecisionTreeMetadata.buildMetadata(retaggedInput, strategy, numTrees, featureSubsetStrategy)
-
- // 2. Find the splits and the corresponding bins (interval between the splits) using a sample
- // of the input data.
- val (splits, bins) = DecisionTree.findSplitsBins(retaggedInput, metadata)
-
- // 3. Bin feature values (TreePoint representation).
- // Cache input RDD for speedup during multiple passes.
- val treeInput = TreePoint.convertToTreeRDD(retaggedInput, bins, metadata)
- val baggedInput = if (numTrees > 1) {
- BaggedPoint.convertToBaggedRDD(treeInput, numTrees, seed)
- } else {
- BaggedPoint.convertToBaggedRDDWithoutSampling(treeInput)
- }.persist(StorageLevel.MEMORY_AND_DISK)
-
- // set maxDepth and compute memory usage
- // depth of the decision tree
- // Max memory usage for aggregates
- // TODO: Calculate memory usage more precisely.
- //........
-
- /*
- * The main idea here is to perform group-wise training of the decision tree nodes thus
- * reducing the passes over the data from (# nodes) to (# nodes / maxNumberOfNodesPerGroup).
- * Each data sample is handled by a particular node (or it reaches a leaf and is not used
- * in lower levels).
- */
-
- // FIFO queue of nodes to train: (treeIndex, node)
- val nodeQueue = new mutable.Queue[(Int, Node)]()
- val rng = new scala.util.Random()
- rng.setSeed(seed)
-
- // Allocate and queue root nodes.
- val topNodes: Array[Node] = Array.fill[Node](numTrees)(Node.emptyNode(nodeIndex = 1))
- Range(0, numTrees).foreach(treeIndex => nodeQueue.enqueue((treeIndex, topNodes(treeIndex))))
-
- while (nodeQueue.nonEmpty) {
- // Collect some nodes to split, and choose features for each node (if subsampling).
- // Each group of nodes may come from one or multiple trees, and at multiple levels.
- val (nodesForGroup, treeToNodeToIndexInfo) =
- RandomForest.selectNodesToSplit(nodeQueue, maxMemoryUsage, metadata, rng) // 对decision tree没有意义,nodeQueue只有一个node,不需要选
-
- // 4. Choose node splits, and enqueue new nodes as needed.
- DecisionTree.findBestSplits(baggedInput, metadata, topNodes, nodesForGroup,
- treeToNodeToIndexInfo, splits, bins, nodeQueue, timer)
- }
- val trees = topNodes.map(topNode => new DecisionTreeModel(topNode, strategy.algo))
- RandomForestModel.build(trees)
- }
复制代码
1. DecisionTreeMetadata.buildMetadata org.apache.spark.mllib.tree.impl.DecisionTreeMetadata.scala 这里生成一些后面需要用到的metadata
最关键的是计算每个feature的bins和splits的数目, 计算bins的数目 - //bins数目最大不能超过训练集中样本的size
- val maxPossibleBins = math.min(strategy.maxBins, numExamples).toInt
- //设置默认值
- val numBins = Array.fill[Int](numFeatures)(maxPossibleBins)
- if (numClasses > 2) {
- // Multiclass classification
- val maxCategoriesForUnorderedFeature =
- ((math.log(maxPossibleBins / 2 + 1) / math.log(2.0)) + 1).floor.toInt
- strategy.categoricalFeaturesInfo.foreach { case (featureIndex, numCategories) =>
- // Decide if some categorical features should be treated as unordered features,
- // which require 2 * ((1 << numCategories - 1) - 1) bins.
- // We do this check with log values to prevent overflows in case numCategories is large.
- // The next check is equivalent to: 2 * ((1 << numCategories - 1) - 1) <= maxBins
- if (numCategories <= maxCategoriesForUnorderedFeature) {
- unorderedFeatures.add(featureIndex)
- numBins(featureIndex) = numUnorderedBins(numCategories)
- } else {
- numBins(featureIndex) = numCategories
- }
- }
- } else {
- // Binary classification or regression
- strategy.categoricalFeaturesInfo.foreach { case (featureIndex, numCategories) =>
- numBins(featureIndex) = numCategories
- }
- }
复制代码
其他case,bins数目等于feature的numCategories
对于unordered情况,比较特殊, - /**
- * Given the arity of a categorical feature (arity = number of categories),
- * return the number of bins for the feature if it is to be treated as an unordered feature.
- * There is 1 split for every partitioning of categories into 2 disjoint, non-empty sets;
- * there are math.pow(2, arity - 1) - 1 such splits.
- * Each split has 2 corresponding bins.
- */
- def numUnorderedBins(arity: Int): Int = 2 * ((1 << arity - 1) - 1)
复制代码
根据bins数目,计算splits - /**
- * Number of splits for the given feature.
- * For unordered features, there are 2 bins per split.
- * For ordered features, there is 1 more bin than split.
- */
- def numSplits(featureIndex: Int): Int = if (isUnordered(featureIndex)) {
- numBins(featureIndex) >> 1
- } else {
- numBins(featureIndex) - 1
- }
复制代码
2. DecisionTree.findSplitsBins 首先找出每个feature上可能出现的splits和相应的bins,这是后续算法的基础
这里的注释解释了上面如何计算splits和bins数目的算法 a,对于连续数据,对于一个feature,splits = numBins - 1;上面也说了对于连续值,其实splits可以无限的,如何找到numBins - 1个splits,很简单,这里用sample
b,对于离散数据,两个case
b.1, 无序的feature,用于low-arity(参数较少)的multiclass分类,这种case下划分的可能性比较多, ,所以用subsets of categories来作为划分
b.2, 有序的feature,用于regression,二元分类,或high-arity的多元分类,这种case下划分的可能比较少,m-1,所以用每个category作为划分 - /**
- * Returns splits and bins for decision tree calculation.
- * Continuous and categorical features are handled differently.
- *
- * Continuous features:
- * For each feature, there are numBins - 1 possible splits representing the possible binary
- * decisions at each node in the tree.
- * This finds locations (feature values) for splits using a subsample of the data.
- *
- * Categorical features:
- * For each feature, there is 1 bin per split.
- * Splits and bins are handled in 2 ways:
- * (a) "unordered features"
- * For multiclass classification with a low-arity feature
- * (i.e., if isMulticlass && isSpaceSufficientForAllCategoricalSplits),
- * the feature is split based on subsets of categories.
- * (b) "ordered features"
- * For regression and binary classification,
- * and for multiclass classification with a high-arity feature,
- * there is one bin per category.
- *
- * @param input Training data: RDD of [[org.apache.spark.mllib.regression.LabeledPoint]]
- * @param metadata Learning and dataset metadata
- * @return A tuple of (splits, bins).
- * Splits is an Array of [[org.apache.spark.mllib.tree.model.Split]]
- * of size (numFeatures, numSplits).
- * Bins is an Array of [[org.apache.spark.mllib.tree.model.Bin]]
- * of size (numFeatures, numBins).
- */
- protected[tree] def findSplitsBins(
- input: RDD[LabeledPoint],
- metadata: DecisionTreeMetadata): (Array[Array[Split]], Array[Array[Bin]]) = {
- val numFeatures = metadata.numFeatures
-
- // Sample the input only if there are continuous features.
- val hasContinuousFeatures = Range(0, numFeatures).exists(metadata.isContinuous)
- val sampledInput = if (hasContinuousFeatures) { // 对于连续特征,取值会比较多,需要做抽样
- // Calculate the number of samples for approximate quantile calculation.
- val requiredSamples = math.max(metadata.maxBins * metadata.maxBins, 10000) // 抽样数要远大于桶数
- val fraction = if (requiredSamples < metadata.numExamples) { // 设置抽样比例
- requiredSamples.toDouble / metadata.numExamples
- } else {
- 1.0
- }
- input.sample(withReplacement = false, fraction, new XORShiftRandom().nextInt()).collect()
- } else {
- new Array[LabeledPoint](0)
- }
-
- metadata.quantileStrategy match {
- case Sort =>
- val splits = new Array[Array[Split]](numFeatures) // 初始化splits和bins
- val bins = new Array[Array[Bin]](numFeatures)
-
- // Find all splits.
- // Iterate over all features.
- var featureIndex = 0
- while (featureIndex < numFeatures) { // 遍历所有的feature
- val numSplits = metadata.numSplits(featureIndex) // 取出前面算出的splits和bins的数目
- val numBins = metadata.numBins(featureIndex)
- if (metadata.isContinuous(featureIndex)) { // 对于连续的feature
- val numSamples = sampledInput.length
- splits(featureIndex) = new Array[Split](numSplits)
- bins(featureIndex) = new Array[Bin](numBins)
- val featureSamples = sampledInput.map(lp => lp.features(featureIndex)).sorted // 从sampledInput里面取出该feature的所有取值,排序
- val stride: Double = numSamples.toDouble / metadata.numBins(featureIndex) // 取样数/桶数,决定split(划分)的步长
- logDebug("stride = " + stride)
- for (splitIndex <- 0 until numSplits) { // 开始划分
- val sampleIndex = splitIndex * stride.toInt // 划分数×步长,得到划分所用的sample的index
- // Set threshold halfway in between 2 samples.
- val threshold = (featureSamples(sampleIndex) + featureSamples(sampleIndex + 1)) / 2.0 // 划分点选取在前后两个sample的均值
- splits(featureIndex)(splitIndex) =
- new Split(featureIndex, threshold, Continuous, List()) // 创建Split对象
- }
- bins(featureIndex)(0) = new Bin(new DummyLowSplit(featureIndex, Continuous), // 初始化第一个split,DummyLowSplit,取值是Double.MinValue
- splits(featureIndex)(0), Continuous, Double.MinValue)
- for (splitIndex <- 1 until numSplits) { // 创建所有的bins
- bins(featureIndex)(splitIndex) =
- new Bin(splits(featureIndex)(splitIndex - 1), splits(featureIndex)(splitIndex),
- Continuous, Double.MinValue)
- }
- bins(featureIndex)(numSplits) = new Bin(splits(featureIndex)(numSplits - 1), // 初始化最后一个split,DummyHighSplit,取值是Double.MaxValue
- new DummyHighSplit(featureIndex, Continuous), Continuous, Double.MinValue)
- } else { // 对于分类的feature
- // Categorical feature
- val featureArity = metadata.featureArity(featureIndex) // 离散特征中的取值个数
- if (metadata.isUnordered(featureIndex)) { // 无序的离散特征
- // TODO: The second half of the bins are unused. Actually, we could just use
- // splits and not build bins for unordered features. That should be part of
- // a later PR since it will require changing other code (using splits instead
- // of bins in a few places).
- // Unordered features
- // 2^(maxFeatureValue - 1) - 1 combinations
- splits(featureIndex) = new Array[Split](numSplits)
- bins(featureIndex) = new Array[Bin](numBins)
- var splitIndex = 0
- while (splitIndex < numSplits) {
- val categories: List[Double] =
- extractMultiClassCategories(splitIndex + 1, featureArity)
- splits(featureIndex)(splitIndex) =
- new Split(featureIndex, Double.MinValue, Categorical, categories)
- bins(featureIndex)(splitIndex) = {
- if (splitIndex == 0) {
- new Bin(
- new DummyCategoricalSplit(featureIndex, Categorical),
- splits(featureIndex)(0),
- Categorical,
- Double.MinValue)
- } else {
- new Bin(
- splits(featureIndex)(splitIndex - 1),
- splits(featureIndex)(splitIndex),
- Categorical,
- Double.MinValue)
- }
- }
- splitIndex += 1
- }
- } else { // 有序的离散特征,不需要事先算,因为splits就等于featureArity
- // Ordered features
- // Bins correspond to feature values, so we do not need to compute splits or bins
- // beforehand. Splits are constructed as needed during training.
- splits(featureIndex) = new Array[Split](0)
- bins(featureIndex) = new Array[Bin](0)
- }
- }
- featureIndex += 1
- }
- (splits, bins)
- case MinMax =>
- throw new UnsupportedOperationException("minmax not supported yet.")
- case ApproxHist =>
- throw new UnsupportedOperationException("approximate histogram not supported yet.")
- }
- }
复制代码
3. TreePoint和BaggedPoint TreePoint是LabeledPoint的内部数据结构,这里需要做转换, - private def labeledPointToTreePoint(
- labeledPoint: LabeledPoint,
- bins: Array[Array[Bin]],
- featureArity: Array[Int],
- isUnordered: Array[Boolean]): TreePoint = {
- val numFeatures = labeledPoint.features.size
- val arr = new Array[Int](numFeatures)
- var featureIndex = 0
- while (featureIndex < numFeatures) {
- arr(featureIndex) = findBin(featureIndex, labeledPoint, featureArity(featureIndex),
- isUnordered(featureIndex), bins)
- featureIndex += 1
- }
- new TreePoint(labeledPoint.label, arr) //只是将labeledPoint中的value替换成arr
- }
复制代码
arr是findBin的结果, 这里主要是针对连续特征做处理,将连续的值通过二分查找转换为相应bin的index
对于离散数据,bin等同于featureValue.toInt BaggedPoint,由于random forest是比较典型的bagging算法,所以需要对训练集做bootstrap sample
而对于decision tree是特殊的单根random forest,所以不需要做抽样
BaggedPoint.convertToBaggedRDDWithoutSampling(treeInput)
其实只是做简单的封装
4. DecisionTree.findBestSplits 这段代码写的有点复杂,尤其和randomForest混杂一起 总之,关键在 - // find best split for each node
- val (split: Split, stats: InformationGainStats, predict: Predict) =
- binsToBestSplit(aggStats, splits, featuresForNode, nodes(nodeIndex))
- (nodeIndex, (split, stats, predict))
- }.collectAsMap()
复制代码
看看binsToBestSplit的实现,为了清晰一点,我们只看continuous feature 四个参数, binAggregates: DTStatsAggregator, 就是ImpurityAggregator,给出如果算出impurity的逻辑
splits: Array[Array[Split]], feature对应的splits
featuresForNode: Option[Array[Int]], tree node对应的feature
node: Node, 哪个tree node 返回值, (Split, InformationGainStats, Predict),
Split,最优的split对象(包含featureindex和splitindex)
InformationGainStats,该split产生的Gain对象,表明产生多少增益,多大程度降低impurity
Predict,该节点的预测值,对于连续feature就是平均值,看后面的分析 - private def binsToBestSplit(
- binAggregates: DTStatsAggregator,
- splits: Array[Array[Split]],
- featuresForNode: Option[Array[Int]],
- node: Node): (Split, InformationGainStats, Predict) = {
- // For each (feature, split), calculate the gain, and select the best (feature, split).
- val (bestSplit, bestSplitStats) =
- Range(0, binAggregates.metadata.numFeaturesPerNode).map { featureIndexIdx => //遍历每个feature
- //......取出feature对应的splits
- // Find best split.
- val (bestFeatureSplitIndex, bestFeatureGainStats) =
- Range(0, numSplits).map { case splitIdx => //遍历每个splits
- val leftChildStats = binAggregates.getImpurityCalculator(nodeFeatureOffset, splitIdx)
- val rightChildStats = binAggregates.getImpurityCalculator(nodeFeatureOffset, numSplits)
- rightChildStats.subtract(leftChildStats)
- predictWithImpurity = Some(predictWithImpurity.getOrElse(
- calculatePredictImpurity(leftChildStats, rightChildStats)))
- val gainStats = calculateGainForSplit(leftChildStats, //算出gain,InformationGainStats对象
- rightChildStats, binAggregates.metadata, predictWithImpurity.get._2)
- (splitIdx, gainStats)
- }.maxBy(_._2.gain) //找到gain最大的split的index
- (splits(featureIndex)(bestFeatureSplitIndex), bestFeatureGainStats)
- }
- //......省略离散特征的case
- }.maxBy(_._2.gain) //找到gain最大的feature的split
-
- (bestSplit, bestSplitStats, predictWithImpurity.get._1)
- }
复制代码
Predict,这个需要分析一下
predictWithImpurity.get._1,predictWithImpurity元组的第一个元素
calculatePredictImpurity的返回值中的predict - private def calculatePredictImpurity(
- leftImpurityCalculator: ImpurityCalculator,
- rightImpurityCalculator: ImpurityCalculator): (Predict, Double) = {
- val parentNodeAgg = leftImpurityCalculator.copy
- parentNodeAgg.add(rightImpurityCalculator)
- val predict = calculatePredict(parentNodeAgg)
- val impurity = parentNodeAgg.calculate()
-
- (predict, impurity)
- }
复制代码
- private def calculatePredict(impurityCalculator: ImpurityCalculator): Predict = {
-
- val predict = impurityCalculator.predict
-
- val prob = impurityCalculator.prob(predict)
-
- new Predict(predict, prob)
-
- }
复制代码
这里predict和impurity有什么不同,可以看出 impurity = ImpurityCalculator.calculate()
predict = ImpurityCalculator.predict 对于连续feature,我们就看Variance的实现, - /**
- * Calculate the impurity from the stored sufficient statistics.
- */
- def calculate(): Double = Variance.calculate(stats(0), stats(1), stats(2))
复制代码
- @DeveloperApi
- override def calculate(count: Double, sum: Double, sumSquares: Double): Double = {
- if (count == 0) {
- return 0
- }
- val squaredLoss = sumSquares - (sum * sum) / count
- squaredLoss / count
- }
复制代码
从calculate的实现可以看到,impurity求的就是均方差 - /**
- * Prediction which should be made based on the sufficient statistics.
- */
- def predict: Double = if (count == 0) {
- 0
- } else {
- stats(1) / count
- }
复制代码
而predict求的就是平均值
|