大数据的4V特征-来源 公司的“大数据” 随着公司业务的增长,大量和流程、规则相关的非结构化数据也爆发式增长。比如: 1、业务系统现在平均每天存储20万张图片,磁盘空间每天消耗100G; 2、平均每天产生签约视频文件6000个,每个平均250M,磁盘空间每天消耗1T; …… 三国里的“大数据” “草船借箭”和大数据有什么关系呢?对天象的观察是基于一种对风、云、温度、湿度、光照和所处节气的综合分析这些数据来源于多元化的“非结构”类型,并且数据量较大,只不过这些数据输入到的不是电脑,而是人脑并最终通过计算分析得出结论。 Google分布式计算的三驾马车 Google File System用来解决数据存储的问题,采用N多台廉价的电脑,使用冗余(也就是一份文件保存多份在不同的电脑之上)的方式,来取得读写速度与数据安全并存的结果。 Map-Reduce说穿了就是函数式编程,把所有的操作都分成两类,map与reduce,map用来将数据分成多份,分开处理,reduce将处理后的结果进行归并,得到最终的结果。 BigTable是在分布式系统上存储结构化数据的一个解决方案,解决了巨大的Table的管理、负载均衡的问题。
Hadoop体系架构
Hadoop核心设计
HDFS介绍-文件读流程
Client向NameNode发起文件读取的请求。 NameNode返回文件存储的DataNode的信息。 Client读取文件信息。
HDFS介绍-文件写流程
Client向NameNode发起文件写入的请求。 NameNode根据文件大小和文件块配置情况,返回给Client它所管理部分DataNode的信息。 Client将文件划分为多个Block,根据DataNode的地址信息,按顺序写入到每一个DataNode块中。
MapReduce——映射、化简编程模型 输入数据->Map分解任务->执行并返回结果->Reduce汇总结果->输出结果
Hbase——分布式数据存储系统
Client:使用HBase RPC机制与HMaster和HRegionServer进行通信 Zookeeper:协同服务管理,HMaster通过Zookeepe可以随时感知各个HRegionServer的健康状况 HMaster: 管理用户对表的增删改查操作 HRegionServer:HBase中最核心的模块,主要负责响应用户I/O请求,向HDFS文件系统中读写数据 HRegion:Hbase中分布式存储的最小单元,可以理解成一个Table HStore:HBase存储的核心。由MemStore和StoreFile组成。 HLog:每次用户操作写入Memstore的同时,也会写一份数据到HLog文件 还有哪些NoSQL产品?
为什么要使用NoSQL? 一个高并发网站的DB进化史 关系模型>聚合数据模型的转换-基本变换
关系模型>聚合数据模型的转换-内嵌变换
关系模型>聚合数据模型的转换-分割变换
关系模型>聚合数据模型的转换-内联变换
|