Kevin Kelly(K.K)认为,廉价的并行计算、大型的数据集,以及更好的算法推动了机器智能的发展,从而给企业、产业和人类带来了变革。这张版图的应用划分正是受到了这种观点的启发。正如 K.K 所言,“接下来的 10000 个初创企业的商业计划很容易预测,做 X 然后增加 AI。”有时候甚至连 X 都可以不要,因为机器智能本身就有可能创造出全新的行业。
一流的个性化和推荐算法促进了这些公司的成功。在移动的新战场上,机器智能也不可或缺:如自然语言接口(苹果 Siri)、可视化搜索(Amazon 的 FireFly)、直接提供答案而非链接的动态问题回答。而 IBM 和微软在这个领域也取得了很大进展,但是主要集中在面向大型行业数据集的知识表征任务(因为缺乏上述公司类似的面向人的需求),比方说 IBM 的 Watson 就用到了辅助医生诊断上面。
这种短缺对于真正理解机器智能的创始人来说却是一种福利。这一领域的许多初创企业能够获得种子轮融资,往往就因为一个原因—机器智能人才收购的价格是一般技术人才收购价格的 5 倍以上(比方说 Deep Mind 人均收购价格为 500 到 1000 万美元)。作为有悟性的创始人,你甚至可以网罗一批机器智能人才然后就成立公司,说不定就有人会收购你了—好吧,这是个玩笑,但是这的确反映出“人工”智能的价值。