问题导读
1.创建broadcast变量如何实现的?
2.如何读取广播变量的值?
概述最近工作上忙死了……广播变量这一块其实早就看过了,一直没有贴出来。
本文基于Spark 1.0源码分析,主要探讨广播变量的初始化、创建、读取以及清除。
类关系BroadcastManager类中包含一个BroadcastFactory对象的引用。大部分操作通过调用BroadcastFactory中的方法来实现。
BroadcastFactory是一个Trait,有两个直接子类TorrentBroadcastFactory、HttpBroadcastFactory。这两个子类实现了对HttpBroadcast、TorrentBroadcast的封装,而后面两个又同时集成了Broadcast抽象类。
图……就不画了
BroadcastManager的初始化SparkContext初始化时会创建SparkEnv对象env,这个过程中会调用BroadcastManager的构造方法返回一个对象作为env的成员变量存在:
- val broadcastManager = new BroadcastManager(isDriver, conf, securityManager)
复制代码
构造BroadcastManager对象时会调用initialize方法,主要根据配置初始化broadcastFactory成员变量,并调用其initialize方法。
- val broadcastFactoryClass =
- conf.get("spark.broadcast.factory", "org.apache.spark.broadcast.HttpBroadcastFactory")
-
- broadcastFactory =
- Class.forName(broadcastFactoryClass).newInstance.asInstanceOf[BroadcastFactory]
-
- // Initialize appropriate BroadcastFactory and BroadcastObject
- broadcastFactory.initialize(isDriver, conf, securityManager)
复制代码
两个工厂类的initialize方法都是对其相应实体类的initialize方法的调用,下面分开两个类来看。
HttpBroadcast的initialize方法
- def initialize(isDriver: Boolean, conf: SparkConf, securityMgr: SecurityManager) {
- synchronized {
- if (!initialized) {
- bufferSize = conf.getInt("spark.buffer.size", 65536)
- compress = conf.getBoolean("spark.broadcast.compress", true)
- securityManager = securityMgr
- if (isDriver) {
- createServer(conf)
- conf.set("spark.httpBroadcast.uri", serverUri)
- }
- serverUri = conf.get("spark.httpBroadcast.uri")
- cleaner = new MetadataCleaner(MetadataCleanerType.HTTP_BROADCAST, cleanup, conf)
- compressionCodec = CompressionCodec.createCodec(conf)
- initialized = true
- }
- }
- }
复制代码
除了一些变量的初始化外,主要做两件事情,一是createServer(只有在Driver端会做),其次是创建一个MetadataCleaner对象。
createServer
- private def createServer(conf: SparkConf) {
- broadcastDir = Utils.createTempDir(Utils.getLocalDir(conf))
- server = new HttpServer(broadcastDir, securityManager)
- server.start()
- serverUri = server.uri
- logInfo("Broadcast server started at " + serverUri)
- }
复制代码
首先创建一个存放广播变量的目录,默认是
- conf.get("spark.local.dir", System.getProperty("java.io.tmpdir")).split(',')(0)
复制代码
然后初始化一个HttpServer对象并启动(封装了jetty),启动过程中包括加载资源文件,起端口和线程用来监控请求等。这部分的细节在org.apache.spark.HttpServer类中,此处不做展开。
创建MetadataCleaner对象一个MetadataCleaner对象包装了一个定时计划Timer,每隔一段时间执行一个回调函数,此处传入的回调函数为cleanup:
- private def cleanup(cleanupTime: Long) {
- val iterator = files.internalMap.entrySet().iterator()
- while(iterator.hasNext) {
- val entry = iterator.next()
- val (file, time) = (entry.getKey, entry.getValue)
- if (time < cleanupTime) {
- iterator.remove()
- deleteBroadcastFile(file)
- }
- }
- }
复制代码
即清楚存在吵过一定时长的broadcast文件。在时长未设定(默认情况)时,不清除:
- if (delaySeconds > 0) {
- logDebug(
- "Starting metadata cleaner for " + name + " with delay of " + delaySeconds + " seconds " +
- "and period of " + periodSeconds + " secs")
- timer.schedule(task, periodSeconds * 1000, periodSeconds * 1000)
- }
复制代码
TorrentBroadcast的initialize方法
- def initialize(_isDriver: Boolean, conf: SparkConf) {
- TorrentBroadcast.conf = conf // TODO: we might have to fix it in tests
- synchronized {
- if (!initialized) {
- initialized = true
- }
- }
- }
复制代码
Torrent在此处没做什么,这也可以看出和Http的区别,Torrent的处理方式就是p2p,去中心化。而Http是中心化服务,需要启动服务来接受请求。
创建broadcast变量调用SparkContext中的 def broadcast[T: ClassTag](value: T): Broadcast[T]方法来初始化一个广播变量,实现如下:
- def broadcast[T: ClassTag](value: T): Broadcast[T] = {
- val bc = env.broadcastManager.newBroadcast[T](value, isLocal)
- cleaner.foreach(_.registerBroadcastForCleanup(bc))
- bc
- }
复制代码
即调用broadcastManager的newBroadcast方法:
- def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean) = {
- broadcastFactory.newBroadcast[T](value_, isLocal, nextBroadcastId.getAndIncrement())
- }
复制代码
再调用工厂类的newBroadcast方法,此处返回的是一个Broadcast对象。
HttpBroadcastFactory的newBroadcast
- def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean, id: Long) =
- new HttpBroadcast[T](value_, isLocal, id)
复制代码
即创建一个新的HttpBroadcast对象并返回。
构造对象时主要做两件事情:
- HttpBroadcast.synchronized {
- SparkEnv.get.blockManager.putSingle(
- blockId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
- }
-
- if (!isLocal) {
- HttpBroadcast.write(id, value_)
- }
复制代码
1.将变量id和值放入blockManager,但并不通知master
2.调用伴生对象的write方法
- def write(id: Long, value: Any) {
- val file = getFile(id)
- val out: OutputStream = {
- if (compress) {
- compressionCodec.compressedOutputStream(new FileOutputStream(file))
- } else {
- new BufferedOutputStream(new FileOutputStream(file), bufferSize)
- }
- }
- val ser = SparkEnv.get.serializer.newInstance()
- val serOut = ser.serializeStream(out)
- serOut.writeObject(value)
- serOut.close()
- files += file
- }
复制代码
write方法将对象值按照指定的压缩、序列化写入指定的文件。这个文件所在的目录即是HttpServer的资源目录,文件名和id的对应关系为:
- case class BroadcastBlockId(broadcastId: Long, field: String = "") extends BlockId {
- def name = "broadcast_" + broadcastId + (if (field == "") "" else "_" + field)
- }
复制代码
TorrentBroadcastFactory的newBroadcast方法- def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean, id: Long) =
- new TorrentBroadcast[T](value_, isLocal, id)
复制代码
同样是创建一个TorrentBroadcast对象,并返回。
- TorrentBroadcast.synchronized {
- SparkEnv.get.blockManager.putSingle(
- broadcastId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
- }
-
-
- if (!isLocal) {
- sendBroadcast()
- }
复制代码
做两件事情,第一步和Http一样,第二步:
- def sendBroadcast() {
- val tInfo = TorrentBroadcast.blockifyObject(value_)
- totalBlocks = tInfo.totalBlocks
- totalBytes = tInfo.totalBytes
- hasBlocks = tInfo.totalBlocks
-
- // Store meta-info
- val metaId = BroadcastBlockId(id, "meta")
- val metaInfo = TorrentInfo(null, totalBlocks, totalBytes)
- TorrentBroadcast.synchronized {
- SparkEnv.get.blockManager.putSingle(
- metaId, metaInfo, StorageLevel.MEMORY_AND_DISK, tellMaster = true)
- }
-
- // Store individual pieces
- for (i <- 0 until totalBlocks) {
- val pieceId = BroadcastBlockId(id, "piece" + i)
- TorrentBroadcast.synchronized {
- SparkEnv.get.blockManager.putSingle(
- pieceId, tInfo.arrayOfBlocks(i), StorageLevel.MEMORY_AND_DISK, tellMaster = true)
- }
- }
- }
复制代码
可以看出,先将元数据信息缓存到blockManager,再将块信息缓存过去。开头可以看到有一个分块动作,是调用伴生对象的blockifyObject方法:
- def blockifyObject[T](obj: T): TorrentInfo
复制代码
此方法将对象obj分块(默认块大小为4M),返回一个TorrentInfo对象,第一个参数为一个TorrentBlock对象(包含blockID和block字节数组)、块数量以及obj的字节流总长度。
元数据信息中的blockId为广播变量id+后缀,value为总块数和总字节数。
数据信息是分块缓存,每块的id为广播变量id加后缀及块变好,数据位一个TorrentBlock对象
读取广播变量的值通过调用bc.value来取得广播变量的值,其主要实现在反序列化方法readObject中
HttpBroadcast的反序列化
- 此方法将对象obj分块(默认块大小为4M),返回一个TorrentInfo对象,第一个参数为一个TorrentBlock对象(包含blockID和block字节数组)、块数量以及obj的字节流总长度。
-
- 元数据信息中的blockId为广播变量id+后缀,value为总块数和总字节数。
-
- 数据信息是分块缓存,每块的id为广播变量id加后缀及块变好,数据位一个TorrentBlock对象
-
- 读取广播变量的值
- 通过调用bc.value来取得广播变量的值,其主要实现在反序列化方法readObject中
-
- HttpBroadcast的反序列化
复制代码
首先查看blockManager中是否已有,如有则直接取值,否则调用伴生对象的read方法进行读取:
- def read[T: ClassTag](id: Long): T = {
- logDebug("broadcast read server: " + serverUri + " id: broadcast-" + id)
- val url = serverUri + "/" + BroadcastBlockId(id).name
-
- var uc: URLConnection = null
- if (securityManager.isAuthenticationEnabled()) {
- logDebug("broadcast security enabled")
- val newuri = Utils.constructURIForAuthentication(new URI(url), securityManager)
- uc = newuri.toURL.openConnection()
- uc.setAllowUserInteraction(false)
- } else {
- logDebug("broadcast not using security")
- uc = new URL(url).openConnection()
- }
-
- val in = {
- uc.setReadTimeout(httpReadTimeout)
- val inputStream = uc.getInputStream
- if (compress) {
- compressionCodec.compressedInputStream(inputStream)
- } else {
- new BufferedInputStream(inputStream, bufferSize)
- }
- }
- val ser = SparkEnv.get.serializer.newInstance()
- val serIn = ser.deserializeStream(in)
- val obj = serIn.readObject[T]()
- serIn.close()
- obj
- }
复制代码
使用serverUri和block id对应的文件名直接开启一个HttpConnection将中心服务器上相应的数据取过来,使用配置的压缩和序列化机制进行解压和反序列化。
这里可以看到,所有需要用到广播变量值的executor都需要去driver上pull广播变量的内容。
取到值后,缓存到blockManager中,以便下次使用。
TorrentBroadcast的反序列化
- private def readObject(in: ObjectInputStream) {
- in.defaultReadObject()
- TorrentBroadcast.synchronized {
- SparkEnv.get.blockManager.getSingle(broadcastId) match {
- case Some(x) =>
- value_ = x.asInstanceOf[T]
-
- case None =>
- val start = System.nanoTime
- logInfo("Started reading broadcast variable " + id)
-
- // Initialize @transient variables that will receive garbage values from the master.
- resetWorkerVariables()
-
- if (receiveBroadcast()) {
- value_ = TorrentBroadcast.unBlockifyObject[T](arrayOfBlocks, totalBytes, totalBlocks)
-
- /* Store the merged copy in cache so that the next worker doesn't need to rebuild it.
- * This creates a trade-off between memory usage and latency. Storing copy doubles
- * the memory footprint; not storing doubles deserialization cost. Also,
- * this does not need to be reported to BlockManagerMaster since other executors
- * does not need to access this block (they only need to fetch the chunks,
- * which are reported).
- */
- SparkEnv.get.blockManager.putSingle(
- broadcastId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
-
- // Remove arrayOfBlocks from memory once value_ is on local cache
- resetWorkerVariables()
- } else {
- logError("Reading broadcast variable " + id + " failed")
- }
-
- val time = (System.nanoTime - start) / 1e9
- logInfo("Reading broadcast variable " + id + " took " + time + " s")
- }
- }
- }
复制代码
和Http一样,都是先查看blockManager中是否已经缓存,若没有,则调用receiveBroadcast方法:
- def receiveBroadcast(): Boolean = {
- // Receive meta-info about the size of broadcast data,
- // the number of chunks it is divided into, etc.
- val metaId = BroadcastBlockId(id, "meta")
- var attemptId = 10
- while (attemptId > 0 && totalBlocks == -1) {
- TorrentBroadcast.synchronized {
- SparkEnv.get.blockManager.getSingle(metaId) match {
- case Some(x) =>
- val tInfo = x.asInstanceOf[TorrentInfo]
- totalBlocks = tInfo.totalBlocks
- totalBytes = tInfo.totalBytes
- arrayOfBlocks = new Array[TorrentBlock](totalBlocks)
- hasBlocks = 0
-
- case None =>
- Thread.sleep(500)
- }
- }
- attemptId -= 1
- }
- if (totalBlocks == -1) {
- return false
- }
-
- /*
- * Fetch actual chunks of data. Note that all these chunks are stored in
- * the BlockManager and reported to the master, so that other executors
- * can find out and pull the chunks from this executor.
- */
- val recvOrder = new Random().shuffle(Array.iterate(0, totalBlocks)(_ + 1).toList)
- for (pid <- recvOrder) {
- val pieceId = BroadcastBlockId(id, "piece" + pid)
- TorrentBroadcast.synchronized {
- SparkEnv.get.blockManager.getSingle(pieceId) match {
- case Some(x) =>
- arrayOfBlocks(pid) = x.asInstanceOf[TorrentBlock]
- hasBlocks += 1
- SparkEnv.get.blockManager.putSingle(
- pieceId, arrayOfBlocks(pid), StorageLevel.MEMORY_AND_DISK, tellMaster = true)
-
- case None =>
- throw new SparkException("Failed to get " + pieceId + " of " + broadcastId)
- }
- }
- }
-
- hasBlocks == totalBlocks
- }
复制代码
和写数据一样,同样是分成两个部分,首先取元数据信息,再根据元数据信息读取实际的block信息。注意这里都是从blockManager中读取的,这里贴出blockManager.getSingle的分析。
调用栈中最后到BlockManager.doGetRemote方法,中间有一条语句:
- val locations = Random.shuffle(master.getLocations(blockId))
复制代码
即将存有这个block的节点信息随机打乱,然后使用:
- val data = BlockManagerWorker.syncGetBlock(
- GetBlock(blockId), ConnectionManagerId(loc.host, loc.port))
复制代码
来获取。
从这里可以看出,Torrent方法首先将广播变量数据分块,并存到BlockManager中;每个节点需要读取广播变量时,是分块读取,对每一块都读取其位置信息,然后随机选一个存有此块数据的节点进行get;每个节点读取后会将包含的快信息报告给BlockManagerMaster,这样本地节点也成为了这个广播网络中的一个peer。
与Http方式形成鲜明对比,这是一个去中心化的网络,只需要保持一个tracker即可,这就是p2p的思想。
广播变量的清除
广播变量被创建时,紧接着有这样一句代码:
- cleaner.foreach(_.registerBroadcastForCleanup(bc))
复制代码
cleaner是一个ContextCleaner对象,会将刚刚创建的广播变量注册到其中,调用栈为:
- def registerBroadcastForCleanup[T](broadcast: Broadcast[T]) {
- registerForCleanup(broadcast, CleanBroadcast(broadcast.id))
- }
复制代码
- private def registerForCleanup(objectForCleanup: AnyRef, task: CleanupTask) {
- referenceBuffer += new CleanupTaskWeakReference(task, objectForCleanup, referenceQueue)
- }
复制代码
等出现广播变量被弱引用时(关于弱引用,可以参考:http://blog.csdn.net/lyfi01/article/details/6415726),则会执行
- cleaner.foreach(_.start())
复制代码
start方法中会调用keepCleaning方法,会遍历注册的清理任务(包括RDD、shuffle和broadcast),依次进行清理:
- private def keepCleaning(): Unit = Utils.logUncaughtExceptions {
- while (!stopped) {
- try {
- val reference = Option(referenceQueue.remove(ContextCleaner.REF_QUEUE_POLL_TIMEOUT))
- .map(_.asInstanceOf[CleanupTaskWeakReference])
- reference.map(_.task).foreach { task =>
- logDebug("Got cleaning task " + task)
- referenceBuffer -= reference.get
- task match {
- case CleanRDD(rddId) =>
- doCleanupRDD(rddId, blocking = blockOnCleanupTasks)
- case CleanShuffle(shuffleId) =>
- doCleanupShuffle(shuffleId, blocking = blockOnCleanupTasks)
- case CleanBroadcast(broadcastId) =>
- doCleanupBroadcast(broadcastId, blocking = blockOnCleanupTasks)
- }
- }
- } catch {
- case e: Exception => logError("Error in cleaning thread", e)
- }
- }
- }
复制代码
doCleanupBroadcast调用以下语句:
- broadcastManager.unbroadcast(broadcastId, true, blocking)
复制代码
然后是:
- def unbroadcast(id: Long, removeFromDriver: Boolean, blocking: Boolean) {
- broadcastFactory.unbroadcast(id, removeFromDriver, blocking)
- }
复制代码
每个工厂类调用其对应实体类的伴生对象的unbroadcast方法。
HttpBroadcast中的变量清除
- def unpersist(id: Long, removeFromDriver: Boolean, blocking: Boolean) = synchronized {
- SparkEnv.get.blockManager.master.removeBroadcast(id, removeFromDriver, blocking)
- if (removeFromDriver) {
- val file = getFile(id)
- files.remove(file)
- deleteBroadcastFile(file)
- }
- }
复制代码
1是删除blockManager中的缓存,2是删除本地持久化的文件
TorrentBroadcast中的变量清除- def unpersist(id: Long, removeFromDriver: Boolean, blocking: Boolean) = synchronized {
- SparkEnv.get.blockManager.master.removeBroadcast(id, removeFromDriver, blocking)
- }
复制代码
小结Broadcast可以使用在executor端多次使用某个数据的场景(比如说字典),Http和Torrent两种方式对应传统的CS访问方式和P2P访问方式,当广播变量较大或者使用较频繁时,采用后者可以减少driver端的压力。
BlockManager在此处充当P2P中的tracker角色,没有展开描述,后续会开专题讲这个部分。
出处:http://blog.csdn.net/asongoficeandfire/article/details/37584643
|