分享

配置高可用的Hadoop平台

happy22 发表于 2015-6-18 14:53:49 [显示全部楼层] 只看大图 回帖奖励 阅读模式 关闭右栏 3 19008
问题描述:
1.如何搭建hadoop高可用?
2.HDFS配置HA的结构是什么样子的?



1.概述 
在Hadoop2.x之后的版本,提出了解决单点问题的方案--HA(High Available 高可用)。这篇博客阐述如何搭建高可用的HDFS和YARN,执行步骤如下:
  • 创建hadoop用户
  • 安装JDK
  • 配置hosts
  • 安装SSH
  • 关闭防火墙
  • 修改时区
  • ZK(安装,启动,验证)
  • HDFS+HA的结构图
  • 角色分配
  • 环境变量配置
  • 核心文件配置
  • slave
  • 启动命令(hdfs和yarn的相关命令)
  • HA的切换
  • 效果截图
下面我们给出下载包的链接地址:
  zookeeper下载地址
  hadoop2.x下载地址
      JDK下载地址
  注:若JDK无法下载,请到Oracle的官网下载JDK。
到这里安装包都准备好了,接下来我们开始搭建与配置。

2.搭建2.1创建Hadoop用户
[mw_shl_code=applescript,true]useradd hadoop
passwd hadoop[/mw_shl_code]



然后根据提示,设置密码。接着我给hadoop用户设置面免密码权限,也可自行添加其他权限。

[mw_shl_code=bash,true]chmod +w /etc/sudoers
hadoop ALL=(root)NOPASSWD:ALL
chmod -w /etc/sudoers[/mw_shl_code]


2.2安装JDK
将下载好的安装包解压到 /usr/java/jdk1.7,然后设置环境变量,命令如下:

[mw_shl_code=applescript,true]sudo vi /etc/profile[/mw_shl_code]


然后编辑配置,内容如下:

[mw_shl_code=applescript,true]export JAVA_HOME=/usr/java/jdk1.7
export PATH=$PATH:$JAVA_HOME/bin[/mw_shl_code]


然后使环境变量立即生效,命令如下:

[mw_shl_code=applescript,true]source /etc/profile[/mw_shl_code]


然后验证JDK是否配置成功,命令如下:

[mw_shl_code=applescript,true]java -version[/mw_shl_code]


若显示对应版本号,即表示JDK配置成功。否则,配置无效!

2.3配置hosts
集群中所有机器的hosts配置要要相同(推荐)。可以避免不必要的麻烦,用域名取代IP,方便配置。配置信息如下:

[mw_shl_code=bash,true]10.211.55.12    nna  # NameNode Active
10.211.55.13    nns  # NameNode Standby
10.211.55.14    dn1  # DataNode1
10.211.55.15    dn2  # DataNode2
10.211.55.16    dn3  # DataNode3[/mw_shl_code]

然后用scp命令,将hosts配置分发到各个节点。命令如下:
# 这里以NNS节点为例子scp /etc/hosts hadoop@nns:/etc/
2.4安装SSH  

输入如下命令:
[mw_shl_code=bash,true]ssh-keygen –t rsa[/mw_shl_code]


然后一路按回车键,最后在将id_rsa.pub写到authorized_keys,命令如下:

[mw_shl_code=applescript,true]cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys[/mw_shl_code]

在hadoop用户下,需要给authorized_keys赋予600的权限,不然免密码登陆无效。在其他节点只需要使用 ssh-keygen –t rsa 命令,生产对应的公钥,然后将各个节点的id_rsa.pub追加到nna节点的authorized_keys中。最后,将nna节点下的authorized_keys文件通过scp命令,分发到各个节点的 ~/.ssh/ 目录下。目录如下:
# 这里以NNS节点为例子
[mw_shl_code=applescript,true]scp ~/.ssh/authorized_keys hadoop@nns:~/.ssh/[/mw_shl_code]

然后使用ssh命令相互登录,看是否实现了免密码登录,登录命令如下:
# 这里以nns节点为例子
[mw_shl_code=applescript,true]ssh nns[/mw_shl_code]

若登录过程中木有提示需要输入密码,即表示密码配置成功。

2.5关闭防火墙  

由于hadoop的节点之间需要通信(RPC机制),这样一来就需要监听对应的端口,这里我就直接将防火墙关闭了,命令如下:
[mw_shl_code=applescript,true]chkconfig  iptables off[/mw_shl_code]

注:如果用于生产环境,直接关闭防火墙是存在安全隐患的,我们可以通过配置防火墙的过滤规则,即将hadoop需要监听的那些端口配置到防火墙接受规则中。关于防火墙的规则配置参见“linux防火墙配置”,或者通知公司的运维去帮忙配置管理。

同时,也需要关闭SELinux,可修改 /etc/selinux/config 文件,将其中的 SELINUX=enforcing 改为 SELINUX=disabled即可。

2.6修改时区 

各个节点的时间如果不同步,会出现启动异常,或其他原因。这里将时间统一设置为Shanghai时区。命令如下:

[mw_shl_code=applescript,true]# cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime
cp: overwrite `/etc/localtime'? yes
修改为中国的东八区
# vi /etc/sysconfig/clock
ZONE="Asia/Shanghai"
UTC=false
ARC=false[/mw_shl_code]

2.7ZK(安装,启动,验证)2.7.1安装  

将下载好的安装包,解压到指定位置,这里为直接解压到当前位置,命令如下:

[mw_shl_code=applescript,true]tar -zxvf zk-{version}.tar.gz[/mw_shl_code]


修改zk配置,将zk安装目录下conf/zoo_sample.cfg重命名zoo.cfg,修改其中的内容:


[mw_shl_code=applescript,true]# The number of milliseconds of each tick
# 服务器与客户端之间交互的基本时间单元(ms)
tickTime=2000   

# The number of ticks that the initial  
# synchronization phase can take
# zookeeper所能接受的客户端数量
initLimit=10  

# The number of ticks that can pass between  
# sending a request and getting an acknowledgement
# 服务器和客户端之间请求和应答之间的时间间隔
syncLimit=5

# the directory where the snapshot is stored.
# do not use /tmp for storage, /tmp here is just  
# example sakes.
# 保存zookeeper数据,日志的路径
dataDir=/home/hadoop/data/zookeeper

# the port at which the clients will connect
# 客户端与zookeeper相互交互的端口
clientPort=2181
server.1= dn1:2888:3888
server.2= dn2:2888:3888
server.3= dn3:2888:3888

#server.A=B:C:D  其中A是一个数字,代表这是第几号服务器;B是服务器的IP地址;C表示服务器与群集中的“领导者”交换信息的端口;当领导者失效后,D表示用来执行选举时服务器相互通信的端口。[/mw_shl_code]

接下来,在配置的dataDir目录下创建一个myid文件,里面写入一个0-255之间的一个随意数字,每个zk上这个文件的数字要是不一样的,这些数字应该是从1开始,依次写每个服务器。文件中序号要与dn节点下的zk配置序号一直,如:server.1=dn1:2888:3888,那么dn1节点下的myid配置文件应该写上1。

2.7.2启动  
分别在各个dn节点启动zk进程,命令如下:
[mw_shl_code=applescript,true]bin/zkServer.sh start[/mw_shl_code]
然后,在各个节点输入jps命令,会出现如下进程:
QuorumPeerMain
2.7.3验证 
上面说的输入jps命令,若显示对应的进程,即表示启动成功,同样我们也可以输入zk的状态命令查看,命令如下:

[mw_shl_code=applescript,true]bin/zkServer.sh status[/mw_shl_code]
会出现一个leader和两个follower。

2.8HDFS+HA的结构图 

HDFS配置HA的结构图如下所示:
14.png

上图大致架构包括:
1. 利用共享存储来在两个NN间同步edits信息。以前的HDFS是share nothing but NN,现在NN又share storage,这样其实是转移了单点故障的位置,但中高端的存储设备内部都有各种RAID以及冗余硬件,包括电源以及网卡等,比服务器的可靠性还是略有提高。通过NN内部每次元数据变动后的flush操作,加上NFS的close-to-open,数据的一致性得到了保证。

2. DN同时向两个NN汇报块信息。这是让Standby NN保持集群的最新状态的必须步骤。

3. 用于监视和控制NN进程的FailoverController进程。显然,我们不能在NN进程内部进行心跳等信息同步,最简单的原因,一次FullGC就可以让NN挂起十几分钟,所以,必须要有一个独立的短小精悍的watchdog来专门负责监控。这也是一个松耦合的设计,便于扩展或更改,目前版本里是用ZooKeeper(简称ZK)来做同步锁,但用户可以方便的把这个Zookeeper FailoverController(简称ZKFC)替换为其他的HA方案或leader选举方案。
  
4. 隔离(Fencing),防止脑裂,就是保证在任何时候只有一个主NN,包括三个方面:
   1. 共享存储fencing,确保只有一个NN可以写入edits。
   2. 客户端fencing,确保只有一个NN可以响应客户端的请求。
   3. DN fencing,确保只有一个NN向DN下发命令,譬如删除块,复制块等等。
2.9角色分配

名称
Host
职责
NNA
10.211.55.12
zkfc
NNS
10.211.55.13
zkfc
DN1
10.211.55.14
zookeeper
DN2
10.211.55.15
zookeeper
DN3
10.211.55.16
zookeeper

2.10环境变量配置
  

这里列出了所有的配置,后面配置其他组件,可以参考这里的配置。 配置完成后,输入:. /etc/profile(或source /etc/profile)使之立即生效。验证环境变量配置成功与否,输入:echo $HADOOP_HOME,若输出对应的配置路径,即可认定配置成功。

注:hadoop2.x以后的版本conf文件夹改为etc文件夹了

配置内容如下所示:

[mw_shl_code=applescript,true]export JAVA_HOME=/usr/java/jdk1.7
export HADOOP_HOME=/home/hadoop/hadoop-2.6.0
export ZK_HOME=/home/hadoop/zookeeper-3.4.6
export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOM[/mw_shl_code]

2.11核心文件配置  

注:这里特别提醒,配置文件中的路径在启动集群之前,得存在(若不存在,请事先创建)。下面为给出本篇文章需要创建的路径脚本,命令如下:

[mw_shl_code=applescript,true]mkdir -p /home/hadoop/tmp
mkdir -p /home/hadoop/data/tmp/journal
mkdir -p /home/hadoop/data/dfs/name
mkdir -p /home/hadoop/data/dfs/data
mkdir -p /home/hadoop/data/yarn/local
mkdir -p /home/hadoop/log/yarn[/mw_shl_code]

  • core-site.xml

[mw_shl_code=applescript,true]<?xml version="1.0" encoding="UTF-8"?>
<configuration>
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://cluster1</value>
    </property>

    <property>
        <name>io.file.buffer.size</name>
        <value>131072</value>
    </property>
    <property>
        <name>hadoop.tmp.dir</name>
        <value>/home/hadoop/tmp</value>
    </property>
    <property>
        <name>hadoop.proxyuser.hduser.hosts</name>
        <value>*</value>
    </property>
    <property>
        <name>hadoop.proxyuser.hduser.groups</name>
        <value>*</value>
    </property>
    <property>
        <name>ha.zookeeper.quorum</name>
        <value>dn1:2181,dn2:2181,dn3:2181</value>
    </property>
</configuration>

复制代码

    hdfs-site.xml

复制代码

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
    <property>
        <name>dfs.nameservices</name>
        <value>cluster1</value>
    </property>
    <property>
        <name>dfs.ha.namenodes.cluster1</name>
        <value>nna,nns</value>
    </property>
    <property>
        <name>dfs.namenode.rpc-address.cluster1.nna</name>
        <value>nna:9000</value>
    </property>
    <property>
        <name>dfs.namenode.rpc-address.cluster1.nns</name>
        <value>nns:9000</value>
    </property>

    <property>
        <name>dfs.namenode.http-address.cluster1.nna</name>
        <value>nna:50070</value>
    </property>

    <property>
        <name>dfs.namenode.http-address.cluster1.nns</name>
        <value>nns:50070</value>
    </property>
    <property>
        <name>dfs.namenode.shared.edits.dir</name>
        <value>qjournal://dn1:8485;dn2:8485;dn3:8485/cluster1</value>
    </property>

    <property>
        <name>dfs.client.failover.proxy.provider.cluster1</name>
        <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
    </property>
    <property>
        <name>dfs.ha.fencing.methods</name>
        <value>sshfence</value>
    </property>
    <property>
        <name>dfs.ha.fencing.ssh.private-key-files</name>
        <value>/home/hadoop/.ssh/id_rsa</value>
    </property>
    <property>
        <name>dfs.journalnode.edits.dir</name>
        <value>/home/hadoop/data/tmp/journal</value>
    </property>
    <property>
        <name>dfs.ha.automatic-failover.enabled</name>
        <value>true</value>
    </property>
    <property>
        <name>dfs.namenode.name.dir</name>
        <value>/home/hadoop/data/dfs/name</value>
    </property>
    <property>
        <name>dfs.datanode.data.dir</name>
        <value>/home/hadoop/data/dfs/data</value>
    </property>
    <property>
        <name>dfs.replication</name>
        <value>3</value>
    </property>
    <property>
        <name>dfs.webhdfs.enabled</name>
        <value>true</value>
    </property>

    <property>
        <name>dfs.journalnode.http-address</name>
        <value>0.0.0.0:8480</value>
    </property>
    <property>
        <name>dfs.journalnode.rpc-address</name>
        <value>0.0.0.0:8485</value>
    </property>
    <property>
        <name>ha.zookeeper.quorum</name>
        <value>dn1:2181,dn2:2181,dn3:2181</value>
    </property>

</configuration>[/mw_shl_code]


  • map-site.xml

[mw_shl_code=applescript,true]<?xml version="1.0" encoding="UTF-8"?>
<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
    <property>
        <name>mapreduce.jobhistory.address</name>
        <value>nna:10020</value>
    </property>
    <property>
        <name>mapreduce.jobhistory.webapp.address</name>
        <value>nna:19888</value>
    </property>
</configuration>[/mw_shl_code]


  • yarn-site.xml

[mw_shl_code=applescript,true]<?xml version="1.0" encoding="UTF-8"?>
<configuration>
    <property>
        <name>yarn.resourcemanager.connect.retry-interval.ms</name>
        <value>2000</value>
    </property>
    <property>
        <name>yarn.resourcemanager.ha.enabled</name>
        <value>true</value>
    </property>
    <property>
        <name>yarn.resourcemanager.ha.rm-ids</name>
        <value>rm1,rm2</value>
    </property>
    <property>
        <name>ha.zookeeper.quorum</name>
        <value>dn1:2181,dn2:2181,dn3:2181</value>
    </property>

    <property>
        <name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
        <value>true</value>
    </property>
    <property>
        <name>yarn.resourcemanager.hostname.rm1</name>
        <value>nna</value>
    </property>

    <property>
        <name>yarn.resourcemanager.hostname.rm2</name>
        <value>nns</value>
    </property>
    <!--在namenode1上配置rm1,在namenode2上配置rm2,注意:一般都喜欢把配置好的文件远程复制到其它机器上,但这个在YARN的另一个机器上一定要修改 -->
    <property>
        <name>yarn.resourcemanager.ha.id</name>
        <value>rm1</value>
    </property>
    <!--开启自动恢复功能 -->
    <property>
        <name>yarn.resourcemanager.recovery.enabled</name>
        <value>true</value>
    </property>
    <!--配置与zookeeper的连接地址 -->
    <property>
        <name>yarn.resourcemanager.zk-state-store.address</name>
        <value>dn1:2181,dn2:2181,dn3:2181</value>
    </property>
    <property>
        <name>yarn.resourcemanager.store.class</name>
        <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
    </property>
    <property>
        <name>yarn.resourcemanager.zk-address</name>
        <value>dn1:2181,dn2:2181,dn3:2181</value>
    </property>
    <property>
        <name>yarn.resourcemanager.cluster-id</name>
        <value>cluster1-yarn</value>
    </property>
    <!--schelduler失联等待连接时间 -->
    <property>
        <name>yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms</name>
        <value>5000</value>
    </property>
    <!--配置rm1 -->
    <property>
        <name>yarn.resourcemanager.address.rm1</name>
        <value>nna:8132</value>
    </property>
    <property>
        <name>yarn.resourcemanager.scheduler.address.rm1</name>
        <value>nna:8130</value>
    </property>
    <property>
        <name>yarn.resourcemanager.webapp.address.rm1</name>
        <value>nna:8188</value>
    </property>
    <property>
        <name>yarn.resourcemanager.resource-tracker.address.rm1</name>
        <value>nna:8131</value>
    </property>
    <property>
        <name>yarn.resourcemanager.admin.address.rm1</name>
        <value>nna:8033</value>
    </property>
    <property>
        <name>yarn.resourcemanager.ha.admin.address.rm1</name>
        <value>nna:23142</value>
    </property>
    <!--配置rm2 -->
    <property>
        <name>yarn.resourcemanager.address.rm2</name>
        <value>nns:8132</value>
    </property>
    <property>
        <name>yarn.resourcemanager.scheduler.address.rm2</name>
        <value>nns:8130</value>
    </property>
    <property>
        <name>yarn.resourcemanager.webapp.address.rm2</name>
        <value>nns:8188</value>
    </property>
    <property>
        <name>yarn.resourcemanager.resource-tracker.address.rm2</name>
        <value>nns:8131</value>
    </property>
    <property>
        <name>yarn.resourcemanager.admin.address.rm2</name>
        <value>nns:8033</value>
    </property>
    <property>
        <name>yarn.resourcemanager.ha.admin.address.rm2</name>
        <value>nns:23142</value>
    </property>
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
    <property>
        <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
        <value>org.apache.hadoop.mapred.ShuffleHandler</value>
    </property>
    <property>
        <name>yarn.nodemanager.local-dirs</name>
        <value>/home/hadoop/data/yarn/local</value>
    </property>
    <property>
        <name>yarn.nodemanager.log-dirs</name>
        <value>/home/hadoop/log/yarn</value>
    </property>
    <property>
        <name>mapreduce.shuffle.port</name>
        <value>23080</value>
    </property>
    <!--故障处理类 -->
    <property>
        <name>yarn.client.failover-proxy-provider</name>
        <value>org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvider</value>
    </property>
    <property>
        <name>yarn.resourcemanager.ha.automatic-failover.zk-base-path</name>
        <value>/yarn-leader-election</value>
    </property>
</configuration>[/mw_shl_code]


  • hadoop-env.sh
# The java implementation to use.[mw_shl_code=applescript,true]export JAVA_HOME=/usr/java/jdk1.7[/mw_shl_code]
  • yarn-env.sh
# some Java parameters[mw_shl_code=applescript,true]export JAVA_HOME=/usr/java/jdk1.7[/mw_shl_code]
2.12slave 
 修改hadoop安装目录下的slave文件:
[mw_shl_code=applescript,true]dn1
dn2
dn3[/mw_shl_code]

2.13启动命令(hdfs和yarn的相关命令) 
 由于我们配置了QJM,所以我们需要先启动QJM的服务,启动顺序如下所示:

  • 进入到DN节点,启动zk的服务:zkServer.sh start,之后可以输入zkServer.sh status查看启动状态,本次我们配置了三个DN节点,会出现一个leader和两个follower。输入jps,会显示启动进程:QuorumPeerMain
  • 在NN节点上(选一台即可,这里我选择的是一台预NNA节点),然后启动journalnode服务,命令如下:hadoop-daemons.sh start journalnode。或者单独进入到每个DN输入启动命令:hadoop-daemon.sh start journalnode。输入jps显示启动进程:JournalNode
  • 接着若是配置后,我们首次启动,需要格式化HDFS,命令如下:hadoop namenode –format
  • 之后我们需要格式化ZK,命令如下:hdfs zkfc –formatZK
  • 接着我们启动hdfs和yarn,命令如下:start-dfs.shstart-yarn.sh,我们在nna输入jps查看进程,显示如下:DFSZKFailoverControllerNameNodeResourceManager
  • 接着我们在NNS输入jps查看,发现只有DFSZKFailoverController进程,这里我们需要手动启动NNS上的namenodeResourceManager进程,命令如下:hadoop-daemon.sh start namenodeyarn-daemon.sh start resourcemanager。需要注意的是,在NNS上的yarn-site.xml中,需要配置指向NNS,属性配置为rm2,在NNA中配置的是rm1。
  • 最后我们需要同步NNA节点的元数据,命令如下:hdfs namenode –bootstrapStandby,若执行正常,日志最后显示如下信息:

[mw_shl_code=applescript,true]15/02/21 10:30:59 INFO common.Storage: Storage directory /home/hadoop/data/dfs/name has been successfully formatted.
15/02/21 10:30:59 WARN common.Util: Path /home/hadoop/data/dfs/name should be specified as a URI in configuration files. Please update hdfs configuration.
15/02/21 10:30:59 WARN common.Util: Path /home/hadoop/data/dfs/name should be specified as a URI in configuration files. Please update hdfs configuration.
15/02/21 10:31:00 INFO namenode.TransferFsImage: Opening connection to http://nna:50070/imagetransfer?getimage=1&txid=0&storageInfo=-60:1079068934:0:CID-1dd0c11e-b27e-4651-aad6-73bc7dd820bd
15/02/21 10:31:01 INFO namenode.TransferFsImage: Image Transfer timeout configured to 60000 milliseconds
15/02/21 10:31:01 INFO namenode.TransferFsImage: Transfer took 0.01s at 0.00 KB/s
15/02/21 10:31:01 INFO namenode.TransferFsImage: Downloaded file fsimage.ckpt_0000000000000000000 size 353 bytes.
15/02/21 10:31:01 INFO util.ExitUtil: Exiting with status 0
15/02/21 10:31:01 INFO namenode.NameNode: SHUTDOWN_MSG:  /************************************************************ SHUTDOWN_MSG: Shutting down NameNode at nns/10.211.55.13 ************************************************************/[/mw_shl_code]


2.14HA的切换  
由于我配置的是自动切换,若NNA节点宕掉,NNS节点会立即由standby状态切换为active状态。若是配置的手动状态,可以输入如下命令进行人工切换:

[mw_shl_code=applescript,true]hdfs haadmin -failover --forcefence --forceactive nna  nns[/mw_shl_code]
  这条命令的意思是,将nna变成standby,nns变成active。而且手动状态下需要重启服务。
2.15效果截图
251530324086454.png

251530218467748.png

251530503147085.png

251530415189105.png
3.总结 
这篇文章就赘述到这里,若在配置过程中有什么疑问或问题,可以加入QQ群讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!

已有(3)人评论

跳转到指定楼层
marc_chen 发表于 2015-6-29 09:01:10
1. 利用共享存储来在两个NN间同步edits信息。那这个环境中还需要另外配置一个专业存储做为共享存储吗?
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

推荐上一条 /2 下一条