问题导读
1.增加map数量?
2.本文的思路是什么?
1、增加map数量首先调整上一步reducer生成文件数据,下面可以把reduce设置为160,即生成160个文件
[mw_shl_code=bash,true]set mapred.reduce.tasks=160;
create table test as
select * from temp
distribute by rand(123);[/mw_shl_code]
2、单纯调整map数量,增加map num===================初步 filenum :150 num , filesize: 1.2 G , map :7 num, reduce : 100 num ====================================
hive (bigdata)> set mapreduce.job.reduces;
mapreduce.job.reduces=-1
hive (default)> set mapred.map.tasks;
mapred.map.tasks=200
hive (default)> set mapred.reduce.tasks;
mapred.reduce.tasks=-1 —(default: 2)
hive (default)> set dfs.block.size;
dfs.block.size=134217728
hive (bigdata)> set mapred.min.split.size;
mapred.min.split.size=1
hive (default)> set mapred.max.split.size;
mapred.max.split.size=256000000 drop table default.tb_user_terminal_test;
create table default.tb_user_terminal_test as select sum(mdn),usp,times,start_time from bigdata.tb_user_terminal_udp_s2 group by mdn,times,start_time,usp; — Time taken: 74.709 seconds ====================
hive (bigdata)> set mapred.map.tasks;
mapred.map.tasks=160
hive (bigdata)> set mapreduce.job.reduces;
mapreduce.job.reduces=100
hive (bigdata)> set mapred.reduce.tasks;
mapred.reduce.tasks=150
hive (bigdata)> set dfs.block.size;
dfs.block.size=16777216
hive (bigdata)> set mapred.min.split.size;
mapred.min.split.size=1
hive (bigdata)> set mapred.max.split.size;
mapred.max.split.size=2560000 drop table default.tb_user_terminal_test;
create table default.tb_user_terminal_test as select sum(mdn),usp,times,start_time from bigdata.tb_user_terminal_udp_s2 group by mdn,times,start_time,usp; — Time taken: 126.13 seconds ===================
hive (default)> set mapreduce.job.reduces;
mapreduce.job.reduces=100
hive (default)> set mapred.map.tasks;
mapred.map.tasks=200
hive (default)> set mapred.reduce.tasks;
mapred.reduce.tasks=100
hive (default)> set dfs.block.size;
dfs.block.size=134217728
hive (default)> set mapred.min.split.size;
mapred.min.split.size=1
hive (default)> set mapred.max.split.size;
mapred.max.split.size=25600000 drop table default.tb_user_terminal_test;
create table default.tb_user_terminal_test as select sum(mdn),usp,times,start_time from bigdata.tb_user_terminal_udp_s2 group by mdn,times,start_time,usp; — Time taken: 47.179 seconds ===================
hive (default)> set mapreduce.job.reduces;
mapreduce.job.reduces=100
hive (default)> set mapred.map.tasks; —
mapred.map.tasks=200
hive (default)> set mapred.reduce.tasks; —
mapred.reduce.tasks=58
hive (default)> set dfs.block.size;
dfs.block.size=134217728 —
hive (default)> set mapred.min.split.size;
mapred.min.split.size=1
hive (default)> set mapred.max.split.size;
mapred.max.split.size=25600000 — drop table default.tb_user_terminal_test;
create table default.tb_user_terminal_test as select sum(mdn),usp,times,start_time from bigdata.tb_user_terminal_udp_s2 group by mdn,times,start_time,usp; — Time taken: 40.749 seconds ======================最终调整=== filesize : 1.2g, map :150 num, reduce : 58 num , file: 150 num ======================== hive (default)> set mapreduce.job.reduces;
mapreduce.job.reduces=100
hive (default)> set mapred.map.tasks;
mapred.map.tasks=200
hive (default)> set mapred.reduce.tasks;
mapred.reduce.tasks=58
hive (default)> set hive.merge.mapredfiles;
hive.merge.mapredfiles=false
hive (default)> set dfs.block.size;
dfs.block.size=134217728
hive (default)> set mapred.min.split.size;
mapred.min.split.size=1
hive (default)> set mapred.max.split.size;
mapred.max.split.size=4560000
hive (default)> set hive.groupby.skewindata;
set hive.groupby.skewindata=true drop table default.tb_user_terminal_test;
create table default.tb_user_terminal_test as select sum(mdn),usp,times,start_time from bigdata.tb_user_terminal_udp_s2 group by mdn,times,start_time,usp; —Time taken: 42.903 seconds
由于我们需求是没有reducer,为了提高集群资源利用率,手动提高了map的数量! 结论:提高了map :7-->150 num,最后平均跑2h的任务,缩减平均10min!
每个任务执行执行效率都比较均衡:
合理分配map,reduce个数,让某些大任务可以运行集群极限的map,reduce个数,这里怎么确定呢,需要参考 yarn的资源调优,让任务没有Pending,一起Running,那样就不会有任务拖后腿!提高执行效率!当然这里的优化参数最好针对每个应用内部设置!
3、FileInputFormat中的getSplits—>plitSize由来
[mw_shl_code=java,true]
/** Splits files returned by {@link #listStatus(JobConf)} when
* they're too big.*/
public InputSplit[] getSplits(JobConf job, int numSplits)
throws IOException {
StopWatch sw = new StopWatch().start();
FileStatus[] files = listStatus(job);
// Save the number of input files for metrics/loadgen
job.setLong(NUM_INPUT_FILES, files.length);
long totalSize = 0; // compute total size
for (FileStatus file: files) { // check we have valid files
if (file.isDirectory()) {
throw new IOException("Not a file: "+ file.getPath());
}
totalSize += file.getLen();
}
long goalSize = totalSize / (numSplits == 0 ? 1 : numSplits);
long minSize = Math.max(job.getLong(org.apache.hadoop.mapreduce.lib.input.
FileInputFormat.SPLIT_MINSIZE, 1), minSplitSize);
// generate splits
ArrayList<FileSplit> splits = new ArrayList<FileSplit>(numSplits);
NetworkTopology clusterMap = new NetworkTopology();
for (FileStatus file: files) {
Path path = file.getPath();
long length = file.getLen();
if (length != 0) {
FileSystem fs = path.getFileSystem(job);
BlockLocation[] blkLocations;
if (file instanceof LocatedFileStatus) {
blkLocations = ((LocatedFileStatus) file).getBlockLocations();
} else {
blkLocations = fs.getFileBlockLocations(file, 0, length);
}
if (isSplitable(fs, path)) {
long blockSize = file.getBlockSize();
long splitSize = computeSplitSize(goalSize, minSize, blockSize);
long bytesRemaining = length;
while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
String[][] splitHosts = getSplitHostsAndCachedHosts(blkLocations,
length-bytesRemaining, splitSize, clusterMap);
splits.add(makeSplit(path, length-bytesRemaining, splitSize,
splitHosts[0], splitHosts[1]));
bytesRemaining -= splitSize;
}
if (bytesRemaining != 0) {
String[][] splitHosts = getSplitHostsAndCachedHosts(blkLocations, length
- bytesRemaining, bytesRemaining, clusterMap);
splits.add(makeSplit(path, length - bytesRemaining, bytesRemaining,
splitHosts[0], splitHosts[1]));
}
} else {
String[][] splitHosts = getSplitHostsAndCachedHosts(blkLocations,0,length,clusterMap);
splits.add(makeSplit(path, 0, length, splitHosts[0], splitHosts[1]));
}
} else {
//Create empty hosts array for zero length files
splits.add(makeSplit(path, 0, length, new String[0]));
}
}
sw.stop();
if (LOG.isDebugEnabled()) {
LOG.debug("Total # of splits generated by getSplits: " + splits.size()
+ ", TimeTaken: " + sw.now(TimeUnit.MILLISECONDS));
}
return splits.toArray(new FileSplit[splits.size()]);
}[/mw_shl_code]
转载自sparkjvm的博客
|