分享

Hadoop YARN架构设计要点

问题导读:

1.YARN整体架构是什么?
2.如何实现YARN RPC?
3.ResourceManager内部原理是什么?
4.NodeManager内部原理是什么?
5.事件处理机制是怎样的?
6.什么是状态机?
7.NMLivelinessMonitor如何工作(源码分析)?




解决方案:

概述:

YARN是开源项目Hadoop的一个资源管理系统,最初设计是为了解决Hadoop中MapReduce计算框架中的资源管理问题,但是现在它已经是一个更加通用的资源管理系统,可以把MapReduce计算框架作为一个应用程序运行在YARN系统之上,通过YARN来管理资源。如果你的应用程序也需要借助YARN的资源管理功能,你也可以实现YARN提供的编程API,将你的应用程序运行于YARN之上,将资源的分配与回收统一交给YARN去管理,可以大大简化资源管理功能的开发。当前,也有很多应用程序已经可以构建于YARN之上,如Storm、Spark等计算框架。






YARN整体架构

YARN是基于Master/Slave模式的分布式架构,我们先看一下,YARN的架构设计,如图所示(来自官网文档):

2016-04-06_164053.png

上图,从逻辑上定义了YARN系统的核心组件和主要交互流程,各个组件说明如下:

YARN Client
YARN Client提交Application到RM,它会首先创建一个Application上下文件对象,并设置AM必需的资源请求信息,然后提交到RM。YARN Client也可以与RM通信,获取到一个已经提交并运行的Application的状态信息等,具体详见后面ApplicationClientProtocol协议的分析说明。


ResourceManager(RM)
RM是YARN集群的Master,负责管理整个集群的资源和资源分配。RM作为集群资源的管理和调度的角色,如果存在单点故障,则整个集群的资源都无法使用。在2.4.0版本才新增了RM HA的特性,这样就增加了RM的可用性。

NodeManager(NM)
NM是YARN集群的Slave,是集群中实际拥有实际资源的工作节点。我们提交Job以后,会将组成Job的多个Task调度到对应的NM上进行执行。Hadoop集群中,为了获得分布式计算中的Locality特性,会将DN和NM在同一个节点上运行,这样对应的HDFS上的Block可能就在本地,而无需在网络间进行数据的传输。

Container
Container是YARN集群中资源的抽象,将NM上的资源进行量化,根据需要组装成一个个Container,然后服务于已授权资源的计算任务。计算任务在完成计算后,系统会回收资源,以供后续计算任务申请使用。Container包含两种资源:内存和CPU,后续Hadoop版本可能会增加硬盘、网络等资源。

ApplicationMaster(AM)
AM主要管理和监控部署在YARN集群上的Application,以MapReduce为例,MapReduce Application是一个用来处理MapReduce计算的服务框架程序,为用户编写的MapReduce程序提供运行时支持。通常我们在编写的一个MapReduce程序可能包含多个Map Task或Reduce Task,而各个Task的运行管理与监控都是由这个MapReduce Application来负责,比如运行Task的资源申请,由AM向RM申请;启动/停止NM上某Task的对应的Container,由AM向NM请求来完成。

下面,我们基于Hadoop 2.6.0的YARN源码,来探讨YARN内部实现原理。

YARN协议

YARN是一个分布式资源管理系统,它包含了分布的多个组件,我们可以通过这些组件之间设计的交互协议来说明,如图所示:

2016-04-06_164140.png

下面我们来详细看看各个协议实现的功能:

ApplicationClientProtocol(Client -> RM)

2016-04-06_164244.png

ResourceTracker(NM -> RM)
2016-04-06_164351.png

ApplicationMasterProtocol(AM -> RM)
2016-04-06_164423.png

ContainerManagementProtocol(AM -> NM)
2016-04-06_164451.png

ResourceManagerAdministrationProtocol(RM Admin -> RM)
2016-04-06_164522.png

HAServiceProtocol(Active RM HA Framework Standby RM)
2016-04-06_164552.png





YARN RPC实现:

1.X版本的Hadoop使用默认实现的Writable协议作为RPC协议,而在2.X版本,重写了RPC框架,改成默认使用Protobuf协议作为Hadoop的默认RPC通信协议。 YARN RPC的实现,如下面类图所示:
2016-04-06_164659.png

通过上图可以看出,RpcEngine有两个实现:WritableRpcEngine和ProtobufRpcEngine,默认使用ProtobufRpcEngine,我们可以选择使用1.X默认的RPC通信协议,甚至可以自定义实现。





ResourceManager内部原理:

RM是YARN分布式系统的主节点,ResourceManager服务进程内部有很多组件提供其他服务,包括对外RPC服务,已经维护内部一些对象状态的服务等,RM的内部结构如图所示:

2016-04-06_164827.png

上图中RM内部各个组件(Dispatcher/EventHandler/Service)的功能,可以查看源码。
这里,说一下ResourceScheduler组件,它是RM内部最重要的一个组件,用它来实现资源的分配与回收,它提供了一定算法,在运行时可以根据算法提供的策略来对资源进行调度。YARN内部有3种资源调度策略的实现:FifoScheduler、FairScheduler、CapacityScheduler,其中默认实现为CapacityScheduler。CapacityScheduler实现了资源更加细粒度的分配,可以设置多级队列,每个队列都有一定的容量,即对队列设置资源上限和下限,然后对每一级别队列分别再采用合适的调度策略(如FIFO)进行调度。
如果我们想实现自己的资源调度策略,可以直接实现YARN的资源调度接口ResourceScheduler,然后修改yarn-site.xml中的配置项yarn.resourcemanager.scheduler.class即可。






NodeManager内部原理:

NM是YARN系统中实际持有资源的从节点,也是实际用户程序运行的宿主节点,内部结构如图所示:

2016-04-06_164952.png

上图中NM内部各个组件(Dispatcher/EventHandler/Service)的功能,可以查看源码,不再累述。




事件处理机制:

事件处理可以分成2大类,一类是同步处理事件,事件处理过程会阻塞调用进程,通常这样的事件处理逻辑非常简单,不会长时间阻塞;另一类就是异步处理处理事件,通常在接收到事件以后,会有一个用来派发事件的Dispatcher,将事件发到对应的事件队列中,这采用生产者-消费者模式,消费者这会监视着队列,并从取出事件进行异步处理。
YARN中到处可以见到事件处理,其中比较特殊一点的就是将状态机(StateMachine)作为一个事件处理器,从而通过事件来触发特定对象状态的变迁,通过这种方式来管理对象状态。我们先看一下YARN中事件处理的机制,以ResourceManager端为例,如下图所示:


2016-04-06_165129.png

产生的事件通过Dispatcher进行派发并进行处理,如果EventHandler处理逻辑比较简单,直接同步处理,否则可能会采用异步处理的方式。在EventHandler处理的过程中,还可能产生新的事件Event,然后再次通过RM的Dispatcher进行派发,而后处理。





状态机:

我们以RM端管理的RMAppImpl对象为例,它表示一个Application运行过程中,在RM端的所维护的Application的状态,该对象对应的所有状态及其状态转移路径,如下图所示:
2016-04-06_165248.png

在上图中如果加上触发状态转移的事件及其类型,可能整个图会显得很乱,所以这里,我详细画了一个分图,用来说明,每一个状态的变化都是有哪种类型的事件触发的,根据这个图,可以方便地阅读源码,如下图所示:
2016-04-06_165338.png



NMLivelinessMonitor源码分析实例:

YARN主要采用了Dispatcher+EventHandler+Service这样的抽象,将所有的内部/外部组件采用这种机制来实现,由于存在很多的Service和EventHandler,而且有的组件可能既是一个Service,同时还是一个EventHandler,所以在阅读代码的时候可能会感觉迷茫,这里我给出了一个阅读NMLivelinessMonitor服务的实例,仅供想研究源码的人参考。
NMLivelinessMonitor是ResourceManager端的一个监控服务实现,它主要是用来监控注册的节点的Liveliness状态,这里是监控NodeManager的状态。该服务会周期性地检查NodeManager的心跳信息来确保注册到ResourceManager的NodeManager当前处于活跃状态,可以执行资源分配以及处理计算任务,在NMLivelinessMonitor类继承的抽象泛型类AbstractLivelinessMonitor中有一个Map,如下所示:

[mw_shl_code=applescript,true]private Map<O, Long> running = new HashMap<O, Long>();[/mw_shl_code]

这里面O被替换成了NodeId,而值类型Long表示时间戳,也就是表达了一个NodeManager向ResourceManager最后发送心跳信息时间戳,通过检测running中的时间戳;来判断NodeManager是否可以正常使用。
在ResourceManager中可以看到,NMLivelinessMonitor的实例是其一个成员:


[mw_shl_code=applescript,true]protected NMLivelinessMonitor nmLivelinessMonitor;[/mw_shl_code]

看一下NMLivelinessMonitor类的实现,它继承自抽象泛型类AbstractLivelinessMonitor,看NMLivelinessMonitor类的声明:

[mw_shl_code=applescript,true]public class NMLivelinessMonitor extends AbstractLivelinessMonitor<NodeId>[/mw_shl_code]

在类实现中,有一个重写(@Override)的protected的方法expire,如下所示:

[mw_shl_code=applescript,true]@Override
protected void expire(NodeId id) {
  dispatcher.handle(
      new RMNodeEvent(id, RMNodeEventType.EXPIRE));
}
[/mw_shl_code]

我们可以通过该类NMLivelinessMonitor抽象基类中看到调用expire方法的逻辑,是在一个内部线程类PingChecker中,代码如下所示:

[mw_shl_code=applescript,true]private class PingChecker implements Runnable {

  @Override
  public void run() {
    while (!stopped && !Thread.currentThread().isInterrupted()) {
      synchronized (AbstractLivelinessMonitor.this) {
        Iterator<Map.Entry<O, Long>> iterator =
          running.entrySet().iterator();

        //avoid calculating current time everytime in loop
        long currentTime = clock.getTime();

        while (iterator.hasNext()) {
          Map.Entry<O, Long> entry = iterator.next();
          if (currentTime > entry.getValue() + expireInterval) {
            iterator.remove();
            expire(entry.getKey()); // 调用抽象方法expire,会在子类中实现
            LOG.info("Expired:" + entry.getKey().toString() +
                    " Timed out after " + expireInterval/1000 + " secs");
          }
        }
      }
      try {
        Thread.sleep(monitorInterval);
      } catch (InterruptedException e) {
        LOG.info(getName() + " thread interrupted");
        break;
      }
    }
  }
}[/mw_shl_code]

这里面的泛型O在NMLivelinessMonitor类中就是NodeId,所以最关心的逻辑就是前面提到的NMLivelinessMonitor中的expire方法的实现。在expire方法中,调用了dispatcher的handle方法来处理,所以dispatcher应该是一个EventHandler对象,后面我们会看到,它其实是通过ResourceManager中的dispatcher成员,也就是AsyncDispatcher来获取到的(AsyncDispatcher内部有一个组合而成的EventHandler)。
下面,我们接着看NMLivelinessMonitor是如何创建的,在ResourceManager.RMActiveServices类的serviceInit()方法中,代码如下所示:


[mw_shl_code=applescript,true]nmLivelinessMonitor = createNMLivelinessMonitor();
addService(nmLivelinessMonitor);[/mw_shl_code]

跟踪代码继续看createNMLivelinessMonitor方法,如下所示:

[mw_shl_code=applescript,true]private NMLivelinessMonitor createNMLivelinessMonitor() {
  return new NMLivelinessMonitor(this.rmContext
      .getDispatcher());
}[/mw_shl_code]

上面通过rmContext的getDispatcher获取到一个Dispatcher对象,来作为NMLivelinessMonitor构造方法的参数,我们需要看一下这个Dispatcher是如何创建的,查看ResourceManager.serviceInit方法,代码如下所示:

[mw_shl_code=applescript,true]rmDispatcher = setupDispatcher();
addIfService(rmDispatcher);
rmContext.setDispatcher(rmDispatcher);[/mw_shl_code]

继续跟踪代码,setupDispatcher()方法实现如下所示:

[mw_shl_code=applescript,true]private Dispatcher setupDispatcher() {
  Dispatcher dispatcher = createDispatcher();
  dispatcher.register(RMFatalEventType.class,
      new ResourceManager.RMFatalEventDispatcher());
  return dispatcher;
}[/mw_shl_code]

继续看createDispatcher()方法代码实现:

[mw_shl_code=applescript,true]protected Dispatcher createDispatcher() {

  return new AsyncDispatcher();

}[/mw_shl_code]

可以看到,在这里创建了一个AsyncDispatcher对象在创建的NMLivelinessMonitor实例中包含一个AsyncDispatcher实例。回到前面,我们需要知道这个AsyncDispatcher调用getEventHandler()返回的EventHandler的处理逻辑是如何的,NMLivelinessMonitor的代码实现如下所示:

[mw_shl_code=applescript,true]public class NMLivelinessMonitor extends AbstractLivelinessMonitor<NodeId> {

  private EventHandler dispatcher;
  
  public NMLivelinessMonitor(Dispatcher d) {
    super("NMLivelinessMonitor", new SystemClock());
    this.dispatcher = d.getEventHandler(); // 调用AsyncDispatcher的getEventHandler()方法获取EventHandler
  }

  public void serviceInit(Configuration conf) throws Exception {
    int expireIntvl = conf.getInt(YarnConfiguration.RM_NM_EXPIRY_INTERVAL_MS,
            YarnConfiguration.DEFAULT_RM_NM_EXPIRY_INTERVAL_MS);
    setExpireInterval(expireIntvl);
    setMonitorInterval(expireIntvl/3);
    super.serviceInit(conf);
  }

  @Override
  protected void expire(NodeId id) {
    dispatcher.handle(
        new RMNodeEvent(id, RMNodeEventType.EXPIRE));
  }
}[/mw_shl_code]

查看AsyncDispatcher类的getEventHandler()方法,代码如下所示:

[mw_shl_code=applescript,true]@Override
public EventHandler getEventHandler() {
  if (handlerInstance == null) {
    handlerInstance = new GenericEventHandler();
  }
  return handlerInstance;
}[/mw_shl_code]

可见,这里面无论是第一次调用还是其他对象已经调用过该方法,这里面最终只有一个GenericEventHandler实例作为这个dispatcher的内部EventHandler实例,所以继续跟踪代码,看GenericEventHandler实现,如下所示:

[mw_shl_code=applescript,true]class GenericEventHandler implements EventHandler<Event> {
  public void handle(Event event) {
    if (blockNewEvents) {
      return;
    }
    drained = false;

    /* all this method does is enqueue all the events onto the queue */
    int qSize = eventQueue.size();
    if (qSize !=0 && qSize %1000 == 0) {
      LOG.info("Size of event-queue is " + qSize);
    }
    int remCapacity = eventQueue.remainingCapacity();
    if (remCapacity < 1000) {
      LOG.warn("Very low remaining capacity in the event-queue: "
          + remCapacity);
    }
    try {
      eventQueue.put(event); // 将Event放入到队列eventQueue中
    } catch (InterruptedException e) {
      if (!stopped) {
        LOG.warn("AsyncDispatcher thread interrupted", e);
      }
      throw new YarnRuntimeException(e);
    }
  };
}[/mw_shl_code]

将传入handle方法的Event丢进了eventQueue队列,也就是说GenericEventHandler是基于eventQueue的一个生产者,那么消费者是AsyncDispatcher内部的另一个线程,如下所示:

[mw_shl_code=applescript,true]@Override
protected void serviceStart() throws Exception {
  //start all the components
  super.serviceStart();
  eventHandlingThread = new Thread(createThread()); // 调用创建消费eventQueue队列中事件的线程
  eventHandlingThread.setName("AsyncDispatcher event handler");
  eventHandlingThread.start();
}[/mw_shl_code]

查看createThread()方法,如下所示:
[mw_shl_code=applescript,true]Runnable createThread() {
  return new Runnable() {
    @Override
    public void run() {
      while (!stopped && !Thread.currentThread().isInterrupted()) {
        drained = eventQueue.isEmpty();
        // blockNewEvents is only set when dispatcher is draining to stop,
        // adding this check is to avoid the overhead of acquiring the lock
        // and calling notify every time in the normal run of the loop.
        if (blockNewEvents) {
          synchronized (waitForDrained) {
            if (drained) {
              waitForDrained.notify();
            }
          }
        }
        Event event;
        try {
          event = eventQueue.take(); // 从队列取出事件Event
        } catch(InterruptedException ie) {
          if (!stopped) {
            LOG.warn("AsyncDispatcher thread interrupted", ie);
          }
          return;
        }
        if (event != null) {
          dispatch(event); // 分发处理该有效事件Event
        }
      }
    }
  };
}[/mw_shl_code]

可以看到,从eventQueue队列中取出Event,然后调用dispatch(event);来处理事件,看dispatch(event)方法,如下所示:

[mw_shl_code=applescript,true]@SuppressWarnings("unchecked")
protected void dispatch(Event event) {
  //all events go thru this loop
  if (LOG.isDebugEnabled()) {
    LOG.debug("Dispatching the event " + event.getClass().getName() + "."
        + event.toString());
  }

  Class<? extends Enum> type = event.getType().getDeclaringClass();

  try{
    EventHandler handler = eventDispatchers.get(type); // 通过event获取到事件类型,再根据事件类型获取到已经注册的EventHandler
    if(handler != null) {
      handler.handle(event); // 使用对应的EventHandler处理事件event
    } else {
      throw new Exception("No handler for registered for " + type);
    }
  } catch (Throwable t) {
    //TODO Maybe log the state of the queue
    LOG.fatal("Error in dispatcher thread", t);
    // If serviceStop is called, we should exit this thread gracefully.
    if (exitOnDispatchException
        && (ShutdownHookManager.get().isShutdownInProgress()) == false
        && stopped == false) {
      LOG.info("Exiting, bbye..");
      System.exit(-1);
    }
  }
}[/mw_shl_code]

可以看到,根据已经注册的Map<Class, EventHandler> eventDispatchers表,选择对应的EventHandler来执行实际的事件处理逻辑。这里,再看看这个EventHandler是在哪里住的。前面已经看到,NMLivelinessMonitor类的expire方法中,传入的是new RMNodeEvent(id, RMNodeEventType.EXPIRE),我们再查看ResourceManager.RMActiveServices.serviceInit()方法:

[mw_shl_code=applescript,true]// Register event handler for RmNodes
rmDispatcher.register(
    RMNodeEventType.class, new NodeEventDispatcher(rmContext)); // 注册:事件类型RMNodeEventType,EventHandler实现类NodeEventDispatcher[/mw_shl_code]

可见RMNodeEventType类型的事件是使用ResourceManager.NodeEventDispatcher这个EventHandler来处理的,同时它也是一个Dispatcher,现在再看NodeEventDispatcher的实现:

[mw_shl_code=applescript,true]@Private
public static final class NodeEventDispatcher implements
    EventHandler<RMNodeEvent> {

  private final RMContext rmContext;

  public NodeEventDispatcher(RMContext rmContext) {
    this.rmContext = rmContext;
  }

  @Override
  public void handle(RMNodeEvent event) {
    NodeId nodeId = event.getNodeId();
    RMNode node = this.rmContext.getRMNodes().get(nodeId); // 调用getRMNodes()获取到一个ConcurrentMap<NodeId, RMNode>,它维护每个NodeId的状态(RMNode是一个状态机对象)
    if (node != null) {
      try {
        ((EventHandler<RMNodeEvent>) node).handle(event); // RMNode的实现为RMNodeImpl,它也是一个EventHandler
      } catch (Throwable t) {
        LOG.error("Error in handling event type " + event.getType()
            + " for node " + nodeId, t);
      }
    }
  }
}[/mw_shl_code]


这个里面还没有真正地去处理,而是基于RMNode状态机对象来进行转移处理,所以我们继续看RMNode的实现RMNodeImpl,因为前面事件类型RMNodeEventType.EXPIRE,我们看状态机创建时对该事件类型的转移动作是如何注册的:

[mw_shl_code=applescript,true]  private static final StateMachineFactory<RMNodeImpl,
                                           NodeState,
                                           RMNodeEventType,
                                           RMNodeEvent> stateMachineFactory
                 = new StateMachineFactory<RMNodeImpl,
                                           NodeState,
                                           RMNodeEventType,
                                           RMNodeEvent>(NodeState.NEW)
...
     .addTransition(NodeState.RUNNING, NodeState.LOST,
         RMNodeEventType.EXPIRE,
         new DeactivateNodeTransition(NodeState.LOST))
...
     .addTransition(NodeState.UNHEALTHY, NodeState.LOST,
         RMNodeEventType.EXPIRE,
         new DeactivateNodeTransition(NodeState.LOST))[/mw_shl_code]

在ResourceManager端维护的NodeManager的信息使用RMNodeImpl来表示(在内存中保存ConcurrentMap),所以当前如果expire方法被调用,RMNodeImpl会根据状态机对象中已经注册的前置转移状态(pre-transition state)、后置转移状态(post-transition state)、事件类型(event type)、转移Hook程序,来对事件进行处理,并使当前RMNodeImpl的状态由前置转移状态更新为后置转移状态。
对于上面代码,如果当前RMNodeImpl状态是NodeState.RUNNING,事件为RMNodeEventType.EXPIRE类型,则会调用Hook程序实现DeactivateNodeTransition,状态更新为NodeState.LOST;如果当前RMNodeImpl状态是NodeState.UNHEALTHY,事件为RMNodeEventType.EXPIRE类型,则会调用Hook程序实现DeactivateNodeTransition,状态更新为NodeState.LOST。具体地,每个Transition的处理逻辑如何,可以查看对应的Transition实现代码。



已有(5)人评论

跳转到指定楼层
CM潜修 发表于 2016-4-7 10:27:01
好文章,学习了,谢谢楼主。我是一个沙发
回复

使用道具 举报

lingyufeng 发表于 2016-4-7 17:39:43
谢谢分享,很全面
回复

使用道具 举报

yangxy 发表于 2016-5-3 17:17:24
好文章,谢谢楼主分享
回复

使用道具 举报

ansha886 发表于 2016-6-23 09:58:13
谢谢分享,很全面
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

推荐上一条 /2 下一条