分享

Hadoop二次开发必懂:源码分析MapReduce概论及MapTask(1)

yuwenge 发表于 2014-1-16 16:07:09 [显示全部楼层] 只看大图 回帖奖励 阅读模式 关闭右栏 0 14675
本帖最后由 pig2 于 2014-1-16 17:02 编辑

MapReduce概论


大家都熟悉文件系统,在对HDFS进行分析前,我们并没有花很多的时间去介绍HDFS的背景,毕竟大家对文件系统的还是有一定的理解的,而且也有很好的文档。在分析Hadoop的MapReduce部分前,我们还是先了解系统是如何工作的,然后再进入我们的分析部分。下面的图来是我看到的讲MapReduce最好的图。
1.PNG

以Hadoop带的wordcount为例子(下面是启动行):
  1. hadoop jar hadoop-0.19.0-examples.jar wordcount /usr/input /usr/output
复制代码
用户提交一个任务以后,该任务由JobTracker协调,先执行Map阶段(图中M1,M2和M3),然后执行Reduce阶段(图中R1和R2)。Map阶段和Reduce阶段动作都受TaskTracker监控,并运行在独立于TaskTracker的Java虚拟机中。

我们的输入和输出都是HDFS上的目录(如上图所示)。输入由InputFormat接口描述,它的实现如ASCII文件,JDBC数据库等,分别处理对于的数据源,并提供了数据的一些特征。通过InputFormat实现,可以获取InputSplit接口的实现,这个实现用于对数据进行划分(图中的splite1到splite5,就是划分以后的结果),同时从InputFormat也可以获取RecordReader接口的实现,并从输入中生成<k,v>对。有了<k,v>,就可以开始做map操作了。


map操作通过context.collect(最终通过OutputCollector. collect)将结果写到context中。当Mapper的输出被收集后,它们会被Partitioner类以指定的方式区分地写出到输出文件里。我们可以为Mapper提供Combiner,在Mapper输出它的<k,v>时,键值对不会被马上写到输出里,他们会被收集在list里(一个key值一个list),当写入一定数量的键值对时,这部分缓冲会被Combiner中进行合并,然后再输出到Partitioner中(图中M1的黄颜色部分对应着Combiner和Partitioner)。

Map的动作做完以后,进入Reduce阶段。这个阶段分3个步骤:混洗(Shuffle),排序(sort)和reduce。


混洗阶段,Hadoop的MapReduce框架会根据Map结果中的key,将相关的结果传输到某一个Reducer上(多个Mapper产生的同一个key的中间结果分布在不同的机器上,这一步结束后,他们传输都到了处理这个key的Reducer的机器上)。这个步骤中的文件传输使用了HTTP协议。

排序和混洗是一块进行的,这个阶段将来自不同Mapper具有相同key值的<key,value>对合并到一起。Reduce阶段,上面通过Shuffle和sort后得到的<key, (list of values)>会送到Reducer. reduce方法中处理,输出的结果通过OutputFormat,输出到DFS中。

----------------------------------------------------------------------------------------------------------------------------------------------------
MapTask


接下来我们来分析Task的两个子类,MapTask和ReduceTask。MapTask的相关类图如下:
2.PNG

MapTask其实不是很复杂,复杂的是支持MapTask工作的一些辅助类。MapTask的成员变量少,只有split和splitClass。我们知道,Map的输入是split,是原始数据的一个切分,这个切分由org.apache.hadoop.mapred.InputSplit的子类具体描述(前面我们是通过org.apache.hadoop.mapreduce.InputSplit介绍了InputSplit,它们对外的API是一样的)。splitClass是InputSplit子类的类名,通过它,我们可以利用Java的反射机制,创建出InputSplit子类。而split是一个BytesWritable,它是InputSplit子类串行化以后的结果,再通过InputSplit子类的readFields方法,我们可以回复出对应的InputSplit对象。

MapTask最重要的方法是run。run方法相当简单,配置完系统的TaskReporter后,就根据情况执行runJobCleanupTask,runJobSetupTask,runTaskCleanupTask或执行Mapper。由于MapReduce现在有两套API,MapTask需要支持这两套API,使得MapTask执行Mapper分为runNewMapper和runOldMapper,run*Mapper后,MapTask会调用父类的done方法。

接下来我们来分析runOldMapper,最开始部分是构造Mapper处理的InputSplit,更新Task的配置,然后就开始创建Mapper的RecordReader,rawIn是原始输入,然后分正常(使用TrackedRecordReader,后面讨论)和跳过部分记录(使用SkippingRecordReader,后面讨论)两种情况,构造对应的真正输入in。

跳过部分记录是Map的一种出错恢复策略,我们知道,MapReduce处理的数据集合非常大,而有些任务对一部分出错的数据不进行处理,对结果的影响很小(如大数据集合的一些统计量),那么,一小部分的数据出错导致已处理的大量结果无效,是得不偿失的,跳过这部分记录,成了Mapper的一种选择。

Mapper的输出,是通过MapOutputCollector进行的,也分两种情况,如果没有Reducer,那么,用DirectMapOutputCollector(后面讨论),否则,用MapOutputBuffer(后面讨论)。

构造完Mapper的输入输出,通过构造配置文件中配置的MapRunnable,就可以执行Mapper了。目前系统有两个MapRunnable:MapRunner和MultithreadedMapRunner,如下图。
原有API在这块的处理上和新API有很大的不一样。接口MapRunnable是原有API中Mapper的执行器,run方法就是用于执行用户的Mapper。MapRunner是单线程执行器,相当简单,首先,当MapTask调用:
  1.    MapRunnable<INKEY,INVALUE,OUTKEY,OUTVALUE> runner =ReflectionUtils.newInstance(job.getMapRunnerClass(), job);
复制代码
MapRunner的configure会在newInstance的最后被调用,configure执行的过程中,对应的Mapper会通过反射机制构造出来。

MapRunner的run方法,会先创建对应的key,value对象,然后,对InputSplit的每一对<key,value>,调用Mapper的map方法,循环结束后,Mapper对应的清理方法会被调用。我们需要注意,key,value对象在run方法中是被重复使用的,就是说,每次传入Mapper的map方法的key,value都是同一个对象,只不过是里面的内容变了,对象并没有变。如果你需要保留key,value的内容,需要实现clone机制,克隆出对象的一个新备份。

相对于新API的多线程执行器,老API的MultithreadedMapRunner就比较复杂了,总体来说,就是通过阻塞队列配合Java的多线程执行器,将<key,value>分发到多个线程中去处理。需要注意的是,在这个过程中,这些线程共享一个Mapper实例,如果Mapper有共享的资源,需要有一定的保护机制。runNewMapper用于执行新版本的Mapper,比runOldMapper稍微复杂,我们就不再讨论了。


下一篇
Hadoop二次开发必懂:源码分析MapTask辅助类(2)


没找到任何评论,期待你打破沉寂

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

推荐上一条 /2 下一条