输出此信息
- Block cache LRU eviction started; Attempting to free 24.74 MB of total=209.89 MB
复制代码
表示hbase正在做什么?
-------------------------------------------------------------------------------------------------------------------------------------------------
本文结合HBase 0.94.1版本源码,对HBase的Block Cache实现机制进行分析,总结学习其Cache设计的核心思想。
1. 概述
HBase上Regionserver的内存分为两个部分,一部分作为Memstore,主要用来写;另外一部分作为BlockCache,主要用于读。
写请求会先写入Memstore,Regionserver会给每个region提供一个Memstore,当Memstore满64MB以后,会启动 flush刷新到磁盘。当Memstore的总大小超过限制时(heapsize * hbase.regionserver.global.memstore.upperLimit * 0.9),会强行启动flush进程,从最大的Memstore开始flush直到低于限制。
读请求先到Memstore中查数据,查不到就到BlockCache中查,再查不到就会到磁盘上读,并把读的结果放入BlockCache。由于BlockCache采用的是LRU策略,因此BlockCache达到上限(heapsize * hfile.block.cache.size * 0.85)后,会启动淘汰机制,淘汰掉最老的一批数据。
一个Regionserver上有一个BlockCache和N个Memstore,它们的大小之和不能大于等于heapsize * 0.8,否则HBase不能正常启动。
默认配置下,BlockCache为0.2,而Memstore为0.4。在注重读响应时间的应用场景下,可以将 BlockCache设置大些,Memstore设置小些,以加大缓存的命中率。
HBase RegionServer包含三个级别的Block优先级队列:
Single:如果一个Block第一次被访问,则放在这一优先级队列中;
Multi:如果一个Block被多次访问,则从Single队列移到Multi队列中;
InMemory:如果一个Block是inMemory的,则放到这个队列中。
以上将Cache分级思想的好处在于:
首先,通过inMemory类型Cache,可以有选择地将in-memory的column families放到RegionServer内存中,例如Meta元数据信息;
通过区分Single和Multi类型Cache,可以防止由于Scan操作带来的Cache频繁颠簸,将最少使用的Block加入到淘汰算法中。
默认配置下,对于整个BlockCache的内存,又按照以下百分比分配给Single、Multi、InMemory使用:0.25、0.50和0.25。
注意,其中InMemory队列用于保存HBase Meta表元数据信息,因此如果将数据量很大的用户表设置为InMemory的话,可能会导致Meta表缓存失效,进而对整个集群的性能产生影响。
2. 源码分析
下面是对HBase 0.94.1中相关源码(org.apache.hadoop.hbase.io.hfile.LruBlockCache)的分析过程。
2.1加入Block Cache
- /** Concurrent map (the cache) */
-
- private final ConcurrentHashMap<BlockCacheKey,CachedBlock> map;
-
- /**
-
- * Cache the block with the specified name and buffer.
-
- * <p>
-
- * It is assumed this will NEVER be called on an already cached block. If
-
- * that is done, an exception will be thrown.
-
- * @param cacheKey block’s cache key
-
- * @param buf block buffer
-
- * @param inMemory if block is in-memory
-
- */
-
- public void cacheBlock(BlockCacheKey cacheKey, Cacheable buf, boolean inMemory) {
-
- CachedBlock cb = map.get(cacheKey);
-
- if(cb != null) {
-
- throw new RuntimeException(“Cached an already cached block”);
-
- }
-
- cb = new CachedBlock(cacheKey, buf, count.incrementAndGet(), inMemory);
-
- long newSize = updateSizeMetrics(cb, false);
-
- map.put(cacheKey, cb);
-
- elements.incrementAndGet();
-
- if(newSize > acceptableSize() && !evictionInProgress) {
-
- runEviction();
-
- }
-
- }
-
- /**
-
- * Cache the block with the specified name and buffer.
-
- * <p>
-
- * It is assumed this will NEVER be called on an already cached block. If
-
- * that is done, it is assumed that you are reinserting the same exact
-
- * block due to a race condition and will update the buffer but not modify
-
- * the size of the cache.
-
- * @param cacheKey block’s cache key
-
- * @param buf block buffer
-
- */
-
- public void cacheBlock(BlockCacheKey cacheKey, Cacheable buf) {
-
- cacheBlock(cacheKey, buf, false);
-
- }
复制代码
1) 这里假设不会对同一个已经被缓存的BlockCacheKey重复放入cache操作;
2) 根据inMemory标志创建不同类别的CachedBlock对象:若inMemory为true则创建BlockPriority.MEMORY类型,否则创建BlockPriority.SINGLE;注意,这里只有这两种类型的Cache,因为BlockPriority.MULTI在Cache Block被重复访问时才进行创建,见CachedBlock的access方法代码:
- /**
-
- * Block has been accessed. Update its local access time.
-
- */
-
- public void access(long accessTime) {
-
- this.accessTime = accessTime;
-
- if(this.priority == BlockPriority.SINGLE) {
-
- this.priority = BlockPriority.MULTI;
-
- }
-
- }
复制代码
3) 将BlockCacheKey和创建的CachedBlock对象加入到全局的ConcurrentHashMap map中,同时做一些更新计数操作;
4) 最后判断如果加入后的Block Size大于设定的临界值且当前没有淘汰线程运行,则调用runEviction()方法启动LRU淘汰过程:
- /** Eviction thread */
-
- private final EvictionThread evictionThread;
-
- /**
-
- * Multi-threaded call to run the eviction process.
-
- */
-
- private void runEviction() {
-
- if(evictionThread == null) {
-
- evict();
-
- } else {
-
- evictionThread.evict();
-
- }
-
- }
复制代码
其中,EvictionThread线程即是LRU淘汰的具体实现线程。下面将给出详细分析。
2.2淘汰Block Cache
EvictionThread线程主要用于与主线程的同步,从而完成Block Cache的LRU淘汰过程。
- /*
-
- * Eviction thread. Sits in waiting state until an eviction is triggered
-
- * when the cache size grows above the acceptable level.<p>
-
- *
-
- * Thread is triggered into action by {@link LruBlockCache#runEviction()}
-
- */
-
- private static class EvictionThread extends HasThread {
-
- private WeakReference<LruBlockCache> cache;
-
- private boolean go = true;
-
- public EvictionThread(LruBlockCache cache) {
-
- super(Thread.currentThread().getName() + “.LruBlockCache.EvictionThread”);
-
- setDaemon(true);
-
- this.cache = new WeakReference<LruBlockCache>(cache);
-
- }
-
- @Override
-
- public void run() {
-
- while (this.go) {
-
- synchronized(this) {
-
- try {
-
- this.wait();
-
- } catch(InterruptedException e) {}
-
- }
-
- LruBlockCache cache = this.cache.get();
-
- if(cache == null) break;
-
- cache.evict();
-
- }
-
- }
-
- public void evict() {
-
- synchronized(this) {
-
- this.notify(); // FindBugs NN_NAKED_NOTIFY
-
- }
-
- }
-
- void shutdown() {
-
- this.go = false;
-
- interrupt();
-
- }
-
- }
复制代码
EvictionThread线程启动后,调用wait被阻塞住,直到EvictionThread线程的evict方法被主线程调用时执行notify(见上面的代码分析过程,通过主线程的runEviction方法触发调用),开始执行LruBlockCache的evict方法进行真正的淘汰过程,代码如下:
- /**
-
- * Eviction method.
-
- */
-
- void evict() {
-
- // Ensure only one eviction at a time
-
- if(!evictionLock.tryLock()) return;
-
- try {
-
- evictionInProgress = true;
-
- long currentSize = this.size.get();
-
- long bytesToFree = currentSize - minSize();
-
- if (LOG.isDebugEnabled()) {
-
- LOG.debug(“Block cache LRU eviction started; Attempting to free ” +
-
- StringUtils.byteDesc(bytesToFree) + ” of total=” +
-
- StringUtils.byteDesc(currentSize));
-
- }
-
- if(bytesToFree <= 0) return;
-
- // Instantiate priority buckets
-
- BlockBucket bucketSingle = new BlockBucket(bytesToFree, blockSize,
-
- singleSize());
-
- BlockBucket bucketMulti = new BlockBucket(bytesToFree, blockSize,
-
- multiSize());
-
- BlockBucket bucketMemory = new BlockBucket(bytesToFree, blockSize,
-
- memorySize());
-
- // Scan entire map putting into appropriate buckets
-
- for(CachedBlock cachedBlock : map.values()) {
-
- switch(cachedBlock.getPriority()) {
-
- case SINGLE: {
-
- bucketSingle.add(cachedBlock);
-
- break;
-
- }
-
- case MULTI: {
-
- bucketMulti.add(cachedBlock);
-
- break;
-
- }
-
- case MEMORY: {
-
- bucketMemory.add(cachedBlock);
-
- break;
-
- }
-
- }
-
- }
-
- PriorityQueue<BlockBucket> bucketQueue =
-
- new PriorityQueue<BlockBucket>(3);
-
- bucketQueue.add(bucketSingle);
-
- bucketQueue.add(bucketMulti);
-
- bucketQueue.add(bucketMemory);
-
- int remainingBuckets = 3;
-
- long bytesFreed = 0;
-
- BlockBucket bucket;
-
- while((bucket = bucketQueue.poll()) != null) {
-
- long overflow = bucket.overflow();
-
- if(overflow > 0) {
-
- long bucketBytesToFree = Math.min(overflow,
-
- (bytesToFree - bytesFreed) / remainingBuckets);
-
- bytesFreed += bucket.free(bucketBytesToFree);
-
- }
-
- remainingBuckets-;
-
- }
-
- if (LOG.isDebugEnabled()) {
-
- long single = bucketSingle.totalSize();
-
- long multi = bucketMulti.totalSize();
-
- long memory = bucketMemory.totalSize();
-
- LOG.debug(“Block cache LRU eviction completed; ” +
-
- “freed=” + StringUtils.byteDesc(bytesFreed) + “, ” +
-
- “total=” + StringUtils.byteDesc(this.size.get()) + “, ” +
-
- “single=” + StringUtils.byteDesc(single) + “, ” +
-
- “multi=” + StringUtils.byteDesc(multi) + “, ” +
-
- “memory=” + StringUtils.byteDesc(memory));
-
- }
-
- } finally {
-
- stats.evict();
-
- evictionInProgress = false;
-
- evictionLock.unlock();
-
- }
-
- }
复制代码
1)首先获取锁,保证同一时刻只有一个淘汰线程运行;
2)计算得到当前Block Cache总大小currentSize及需要被淘汰释放掉的大小bytesToFree,如果bytesToFree小于等于0则不进行后续操作;
3) 初始化创建三个BlockBucket队列,分别用于存放Single、Multi和InMemory类Block Cache,其中每个BlockBucket维护了一个CachedBlockQueue,按LRU淘汰算法维护该BlockBucket中的所有CachedBlock对象;
4) 遍历记录所有Block Cache的全局ConcurrentHashMap,加入到相应的BlockBucket队列中;
5) 将以上三个BlockBucket队列加入到一个优先级队列中,按照各个BlockBucket超出bucketSize的大小顺序排序(见BlockBucket的compareTo方法);
6) 遍历优先级队列,对于每个BlockBucket,通过Math.min(overflow, (bytesToFree - bytesFreed) / remainingBuckets)计算出需要释放的空间大小,这样做可以保证尽可能平均地从三个BlockBucket中释放指定的空间;具体实现过程详见BlockBucket的free方法,从其CachedBlockQueue中取出即将被淘汰掉的CachedBlock对象:
- public long free(long toFree) {
-
- CachedBlock cb;
-
- long freedBytes = 0;
-
- while ((cb = queue.pollLast()) != null) {
-
- freedBytes += evictBlock(cb);
-
- if (freedBytes >= toFree) {
-
- return freedBytes;
-
- }
-
- }
-
- return freedBytes;
-
- }
复制代码
7) 进一步调用了LruBlockCache的evictBlock方法,从全局ConcurrentHashMap中移除该CachedBlock对象,同时更新相关计数:
- protected long evictBlock(CachedBlock block) {
-
- map.remove(block.getCacheKey());
-
- updateSizeMetrics(block, true);
-
- elements.decrementAndGet();
-
- stats.evicted();
-
- return block.heapSize();
-
- }
复制代码
8) 释放锁,完成善后工作。
3. 总结
以上关于Block Cache的实现机制,核心思想是将Cache分级,这样的好处是避免Cache之间相互影响,尤其是对HBase来说像Meta表这样的Cache应该保证高优先级。
|