分享

windows通过hadoop-eclipse-plugin插件远程开发hadoop运行mapreduce遇到问题及解决

pig2 发表于 2014-7-2 23:51:20 [显示全部楼层] 只看大图 回帖奖励 阅读模式 关闭右栏 38 176836
本帖最后由 nettman 于 2014-7-9 00:14 编辑
问题导读:
1.如何使用hadoop-eclipse-plugin远程连接hadoop?


2.使用window远程连接hadoop,运行mapreduce与Linux运行mapreduce的区别是什么,需要添加什么内容?

3.window中运行mapreduce,缺少hadoop.dll,与winutils.exe会产生什么错误?






环境介绍:
hadoop版本:hadoop2.2
Windows版本:win7

首先我们通过插件远程连接:
具体操作可以参考:
新手指导:Windows上使用Eclipse远程连接Hadoop进行程序开发

达到效果如下


遇到的问题,可以在新手指导:Windows上使用Eclipse远程连接Hadoop进行程序开发寻找。

下面我们运行mapreduce程序,具体可以参考
通过实例让你真正明白mapreduce---填空式、分布(分割)编程






这里重点说一下遇到的问题,及该如何解决?

遇到问题1:java.lang.ArrayIndexOutOfBoundsException: 0
  1. 2014-06-29 01:11:09,816 WARN  [main] util.NativeCodeLoader (NativeCodeLoader.java:<clinit>(62)) - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
  2. 2014-06-29 01:11:09,831 ERROR [main] com.mapreduce (mapreduce.java:run(80)) - 0
  3. java.lang.ArrayIndexOutOfBoundsException: 0
  4.         at aboutyun.com.mapreduce.run(mapreduce.java:54)
  5.         at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70)
  6.         at aboutyun.com.mapreduce.main(mapreduce.java:34)
复制代码
解决:
数组越界,如果有数组,看看是不是超出了范围,最常见的是忘记0元素。
比如args[1],args[2],我们是否忘记了args[0]了那。办法主要是细心







问题2:Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
  1. 2014-06-29 10:16:25,613 WARN  [main] util.NativeCodeLoader (NativeCodeLoader.java:<clinit>(62)) - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
  2. 2014-06-29 10:16:25,791 ERROR [main] util.Shell (Shell.java:getWinUtilsPath(303)) - Failed to locate the winutils binary in the hadoop binary path
  3. java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.
  4.         at org.apache.hadoop.util.Shell.getQualifiedBinPath(Shell.java:278)
  5.         at org.apache.hadoop.util.Shell.getWinUtilsPath(Shell.java:300)
  6.         at org.apache.hadoop.util.Shell.<clinit>(Shell.java:293)
  7.         at org.apache.hadoop.util.StringUtils.<clinit>(StringUtils.java:76)
  8.         at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.addInputPath(FileInputFormat.java:467)
  9.         at aboutyun.com.mapreduce.run(mapreduce.java:56)
  10.         at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70)
  11.         at aboutyun.com.mapreduce.main(mapreduce.java:36)
  12. 2014-06-29 10:16:25,810 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - session.id is deprecated. Instead, use dfs.metrics.session-id
  13. 2014-06-29 10:16:25,811 INFO  [main] jvm.JvmMetrics (JvmMetrics.java:init(76)) - Initializing JVM Metrics with processName=JobTracker, sessionId=
复制代码




问题3:Exception in thread "main" java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Z

解决:
上面两个问题是因为缺少组件

winutils.exe下载
winutils.zip (18.14 KB, 下载次数: 629)

本帖被以下淘专辑推荐:

已有(39)人评论

跳转到指定楼层
xuanxufeng 发表于 2015-7-22 21:38:02
本帖最后由 xuanxufeng 于 2015-7-22 21:42 编辑
栎梓天冲 发表于 2015-7-22 21:33
这是怎么回事???
Exception in thread "main" java.io.IOException: No FileSystem for scheme: hdfs
...

少导入hadoop-hdfs.jar这个jar包

如不明确包的作用,建议全部倒入。



回复

使用道具 举报

旧收音机 发表于 2014-12-3 00:16:54
不错很感谢你的分享,不过能不能不要金币啊
回复

使用道具 举报

wangpx888 发表于 2014-12-23 22:33:15
关于问题1与2 ,
对应操作之后,执行仍报错,如下:
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/F:/src_resource/hadoop-2.3.0-cdh5.0.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/F:/src_resource/hadoop-2.3.0-cdh5.0.0/share/hadoop/mapreduce1/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
14/12/23 22:15:29 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform...
using builtin-java classes where applicable
14/12/23 22:15:39 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id
14/12/23 22:15:39 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
14/12/23 22:15:40 WARN security.UserGroupInformation: PriviledgedActionException as:Administrator (auth:SIMPLE) cause:
java.io.IOException: Cannot run program "F:\src_resource\hadoop-2.3.0-cdh5.0.0\bin\winutils.exe": CreateProcess error=193, %1 ??????Ч?? Win32 ??ó
Exception in thread "main" java.io.IOException:
Cannot run program "F:\src_resource\hadoop-2.3.0-cdh5.0.0\bin\winutils.exe":
CreateProcess error=193, %1 ??????Ч?? Win32 ??ó

请教,如何理解这个错误,是该winutils.exe不支持XP系统,还是不支持hadoop2.3.0,该如何处理呢,请指点。

点评

xp没有试过,用的是win7,版本hadoop2.2  发表于 2014-12-24 01:16
回复

使用道具 举报

zzuyao 发表于 2015-1-13 01:06:11
回复

使用道具 举报

tang 发表于 2015-3-8 15:42:18
回复

使用道具 举报

ainubis 发表于 2015-3-27 13:22:33
学习了(*^__^*) 嘻嘻……
回复

使用道具 举报

hzlh1987 发表于 2015-5-10 17:47:04
学习了 谢谢大侠
回复

使用道具 举报

fzu3144 发表于 2015-7-15 16:01:41
CentOS 6.6 搭了hadoop环境,win7下IDE装了hadoop插件,mr跑不起来。
[mw_shl_code=bash,true]package com.linewell.tomcat.logs;


import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount {
        
        /**
     * 建立Mapper类TokenizerMapper继承自泛型类Mapper
     * Mapper类:实现了Map功能基类
     * Mapper接口:
     * WritableComparable接口:实现WritableComparable的类可以相互比较。所有被用作key的类应该实现此接口。
     * Reporter 则可用于报告整个应用的运行进度,本例中未使用。
     *
     */
        public static class TokenizerMapper extends Mapper<Object,Text,Text,IntWritable> {
                /**
         * IntWritable, Text 均是 Hadoop 中实现的用于封装 Java 数据类型的类,这些类实现了WritableComparable接口,
         * 都能够被串行化从而便于在分布式环境中进行数据交换,你可以将它们分别视为int,String 的替代品。
         * 声明one常量和word用于存放单词的变量
         */
                private final static IntWritable one = new IntWritable(1);
                private Text word = new Text();
               
                /**
         * Mapper中的map方法:
         * void map(K1 key, V1 value, Context context)
         * 映射一个单个的输入k/v对到一个中间的k/v对
         * 输出对不需要和输入对是相同的类型,输入对可以映射到0个或多个输出对。
         * Context:收集Mapper输出的<k,v>对。
         * Context的write(k, v)方法:增加一个(k,v)对到context
         * 程序员主要编写Map和Reduce函数.这个Map函数使用StringTokenizer函数对字符串进行分隔,通过write方法把单词存入word中
         * write方法存入(单词,1)这样的二元组到context中
         */
                public void map(Object key,Text value,Context context)
                                throws IOException,InterruptedException {
                        StringTokenizer itr = new StringTokenizer(value.toString());
                        while(itr.hasMoreTokens()) {
                                word.set(itr.nextToken());
                                context.write(word, one);
                        }
                }
        }
        
        public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
                private IntWritable result = new IntWritable();
                /**
         * Reducer类中的reduce方法:
         * void reduce(Text key, Iterable<IntWritable> values, Context context)
         * 中k/v来自于map函数中的context,可能经过了进一步处理(combiner),同样通过context输出           
         */
                public void reduce(Text key,Iterable<IntWritable> values,Context context)
                                throws IOException,InterruptedException {
                        int sum = 0;
                        for(IntWritable val : values) {
                                sum += val.get();
                        }
                        result.set(sum);
                        context.write(key, result);
                }
        }
        
        @SuppressWarnings("deprecation")
        public static void main(String[] args) throws Exception{
                System.setProperty("hadoop.home.dir", "f:/master/hadoop");
               
                /**
         * Configuration:map/reduce的j配置类,向hadoop框架描述map-reduce执行的工作
         */
                Configuration conf = new Configuration();
                conf.set("fs.default.name", "hdfs://master:9000");
                conf.set("mapreduce.framework.name", "yarn");  
                conf.set("yarn.resourcemanager.address", "master:8032");  
                String[] ioArgs={"hdfs://master:9000/log","hdfs://master:9000/log_out"};
                String[] otherArgs = new GenericOptionsParser(conf, ioArgs).getRemainingArgs();
                if(otherArgs.length != 2) {
                        System.err.println("Usage:wordcount <in> <out>");
                        System.exit(2);
                }
                Job job = new Job(conf,"word count"); //设置一个用户定义的job名称
                job.setJarByClass(WordCount.class);
               
                //设置Map、Combine和Reduce处理类
                job.setMapperClass(TokenizerMapper.class); //为job设置Mapper类
                job.setCombinerClass(IntSumReducer.class); //为job设置Combiner类
                job.setReducerClass(IntSumReducer.class);  //为job设置Reducer类
               
                //设置输出类型
                job.setOutputKeyClass(Text.class);  //为job的输出数据设置Key类
                job.setOutputValueClass(IntWritable.class);  //为job输出设置value类
               
                //设置输入和输出目录
                FileInputFormat.addInputPath(job, new Path(otherArgs[0]));   //为job设置输入路径
                FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); //为job设置输出路径
                System.exit(job.waitForCompletion(true)? 0 : 1); //运行job
        }
}[/mw_shl_code]

2015-07-15 15:44:22,755 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(1173)) - fs.default.name is deprecated. Instead, use fs.defaultFS
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/I:/%e5%ae%89%e8%a3%85%e9%83%a8%e7%bd%b2/%e5%bc%95%e5%85%a5jar%e5%8c%85/hadoop-eclipse-plugin-2.2.0%e4%be%9d%e8%b5%96%e5%8c%85/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/I:/%e5%ae%89%e8%a3%85%e9%83%a8%e7%bd%b2/%e5%bc%95%e5%85%a5jar%e5%8c%85/hadoop-2.7.0/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/F:/master/hbase-0.98.12.1-hadoop2/lib/slf4j-log4j12-1.6.4.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2015-07-15 15:44:23,834 WARN  [main] util.NativeCodeLoader (NativeCodeLoader.java:<clinit>(62)) - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2015-07-15 15:44:24,915 INFO  [main] client.RMProxy (RMProxy.java:createRMProxy(98)) - Connecting to ResourceManager at master/192.168.37.136:8032
2015-07-15 15:44:26,029 WARN  [main] mapreduce.JobResourceUploader (JobResourceUploader.java:uploadFiles(171)) - No job jar file set.  User classes may not be found. See Job or Job#setJar(String).
2015-07-15 15:44:26,102 INFO  [main] input.FileInputFormat (FileInputFormat.java:listStatus(283)) - Total input paths to process : 1
2015-07-15 15:44:26,421 INFO  [main] mapreduce.JobSubmitter (JobSubmitter.java:submitJobInternal(201)) - number of splits:1
2015-07-15 15:44:26,436 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(1173)) - fs.default.name is deprecated. Instead, use fs.defaultFS
2015-07-15 15:44:26,658 INFO  [main] mapreduce.JobSubmitter (JobSubmitter.java:printTokens(290)) - Submitting tokens for job: job_1436614419410_0030
2015-07-15 15:44:26,810 INFO  [main] mapred.YARNRunner (YARNRunner.java:createApplicationSubmissionContext(371)) - Job jar is not present. Not adding any jar to the list of resources.
2015-07-15 15:44:26,918 INFO  [main] impl.YarnClientImpl (YarnClientImpl.java:submitApplication(273)) - Submitted application application_1436614419410_0030
2015-07-15 15:44:26,952 INFO  [main] mapreduce.Job (Job.java:submit(1294)) - The url to track the job: http://master:8088/proxy/application_1436614419410_0030/
2015-07-15 15:44:26,953 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1339)) - Running job: job_1436614419410_0030
2015-07-15 15:44:32,034 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1360)) - Job job_1436614419410_0030 running in uber mode : false
2015-07-15 15:44:32,037 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1367)) -  map 0% reduce 0%
2015-07-15 15:44:32,066 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1380)) - Job job_1436614419410_0030 failed with state FAILED due to: Application application_1436614419410_0030 failed 2 times due to AM Container for appattempt_1436614419410_0030_000002 exited with  exitCode: 1
For more detailed output, check application tracking page:http://master:8088/cluster/app/application_1436614419410_0030Then, click on links to logs of each attempt.
Diagnostics: Exception from container-launch.
Container id: container_1436614419410_0030_02_000001
Exit code: 1
Exception message: /bin/bash: line 0: fg: no job control

Stack trace: ExitCodeException exitCode=1: /bin/bash: line 0: fg: no job control

        at org.apache.hadoop.util.Shell.runCommand(Shell.java:545)
        at org.apache.hadoop.util.Shell.run(Shell.java:456)
        at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:722)
        at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:211)
        at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302)
        at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82)
        at java.util.concurrent.FutureTask.run(FutureTask.java:266)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745)


Container exited with a non-zero exit code 1
Failing this attempt. Failing the application.
2015-07-15 15:44:32,102 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1385)) - Counters: 0
回复

使用道具 举报

fzu3144 发表于 2015-7-15 16:27:12
win7的IDE跑mr出错~~~
[mw_shl_code=bash,true]SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/I:/%e5%ae%89%e8%a3%85%e9%83%a8%e7%bd%b2/%e5%bc%95%e5%85%a5jar%e5%8c%85/hadoop-eclipse-plugin-2.2.0%e4%be%9d%e8%b5%96%e5%8c%85/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/I:/%e5%ae%89%e8%a3%85%e9%83%a8%e7%bd%b2/%e5%bc%95%e5%85%a5jar%e5%8c%85/hadoop-2.7.0/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/F:/master/hbase-0.98.12.1-hadoop2/lib/slf4j-log4j12-1.6.4.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2015-07-15 16:21:20,201 WARN  [main] util.NativeCodeLoader (NativeCodeLoader.java:<clinit>(62)) - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2015-07-15 16:21:21,279 INFO  [main] client.RMProxy (RMProxy.java:createRMProxy(98)) - Connecting to ResourceManager at master/192.168.37.136:8032
2015-07-15 16:21:23,270 WARN  [main] mapreduce.JobResourceUploader (JobResourceUploader.java:uploadFiles(64)) - Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
2015-07-15 16:21:23,442 WARN  [main] mapreduce.JobResourceUploader (JobResourceUploader.java:uploadFiles(171)) - No job jar file set.  User classes may not be found. See Job or Job#setJar(String).
2015-07-15 16:21:23,609 INFO  [main] input.FileInputFormat (FileInputFormat.java:listStatus(283)) - Total input paths to process : 1
2015-07-15 16:21:25,497 INFO  [main] mapreduce.JobSubmitter (JobSubmitter.java:submitJobInternal(201)) - number of splits:1
2015-07-15 16:21:26,388 INFO  [main] mapreduce.JobSubmitter (JobSubmitter.java:printTokens(290)) - Submitting tokens for job: job_1436614419410_0031
2015-07-15 16:21:26,838 INFO  [main] mapred.YARNRunner (YARNRunner.java:createApplicationSubmissionContext(371)) - Job jar is not present. Not adding any jar to the list of resources.
2015-07-15 16:21:27,433 INFO  [main] impl.YarnClientImpl (YarnClientImpl.java:submitApplication(273)) - Submitted application application_1436614419410_0031
2015-07-15 16:21:27,537 INFO  [main] mapreduce.Job (Job.java:submit(1294)) - The url to track the job: http://master:8088/proxy/application_1436614419410_0031/
2015-07-15 16:21:27,539 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1339)) - Running job: job_1436614419410_0031
2015-07-15 16:21:32,640 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1360)) - Job job_1436614419410_0031 running in uber mode : false
2015-07-15 16:21:32,646 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1367)) -  map 0% reduce 0%
2015-07-15 16:21:32,710 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1380)) - Job job_1436614419410_0031 failed with state FAILED due to: Application application_1436614419410_0031 failed 2 times due to AM Container for appattempt_1436614419410_0031_000002 exited with  exitCode: 1
For more detailed output, check application tracking page:http://master:8088/cluster/app/application_1436614419410_0031Then, click on links to logs of each attempt.
Diagnostics: Exception from container-launch.
Container id: container_1436614419410_0031_02_000001
Exit code: 1
Exception message: /bin/bash: line 0: fg: no job control

Stack trace: ExitCodeException exitCode=1: /bin/bash: line 0: fg: no job control

        at org.apache.hadoop.util.Shell.runCommand(Shell.java:545)
        at org.apache.hadoop.util.Shell.run(Shell.java:456)
        at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:722)
        at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:211)
        at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302)
        at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82)
        at java.util.concurrent.FutureTask.run(FutureTask.java:266)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745)


Container exited with a non-zero exit code 1
Failing this attempt. Failing the application.
2015-07-15 16:21:32,779 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1385)) - Counters: 0
[/mw_shl_code]
回复

使用道具 举报

fzu3144 发表于 2015-7-15 16:29:18
hadoop 2.7版本,linux 6.6,
win7下用IDE跑MR出错。。。。求助~

[mw_shl_code=bash,true]SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/I:/%e5%ae%89%e8%a3%85%e9%83%a8%e7%bd%b2/%e5%bc%95%e5%85%a5jar%e5%8c%85/hadoop-eclipse-plugin-2.2.0%e4%be%9d%e8%b5%96%e5%8c%85/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/I:/%e5%ae%89%e8%a3%85%e9%83%a8%e7%bd%b2/%e5%bc%95%e5%85%a5jar%e5%8c%85/hadoop-2.7.0/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/F:/master/hbase-0.98.12.1-hadoop2/lib/slf4j-log4j12-1.6.4.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2015-07-15 16:21:20,201 WARN  [main] util.NativeCodeLoader (NativeCodeLoader.java:<clinit>(62)) - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2015-07-15 16:21:21,279 INFO  [main] client.RMProxy (RMProxy.java:createRMProxy(98)) - Connecting to ResourceManager at master/192.168.37.136:8032
2015-07-15 16:21:23,270 WARN  [main] mapreduce.JobResourceUploader (JobResourceUploader.java:uploadFiles(64)) - Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
2015-07-15 16:21:23,442 WARN  [main] mapreduce.JobResourceUploader (JobResourceUploader.java:uploadFiles(171)) - No job jar file set.  User classes may not be found. See Job or Job#setJar(String).
2015-07-15 16:21:23,609 INFO  [main] input.FileInputFormat (FileInputFormat.java:listStatus(283)) - Total input paths to process : 1
2015-07-15 16:21:25,497 INFO  [main] mapreduce.JobSubmitter (JobSubmitter.java:submitJobInternal(201)) - number of splits:1
2015-07-15 16:21:26,388 INFO  [main] mapreduce.JobSubmitter (JobSubmitter.java:printTokens(290)) - Submitting tokens for job: job_1436614419410_0031
2015-07-15 16:21:26,838 INFO  [main] mapred.YARNRunner (YARNRunner.java:createApplicationSubmissionContext(371)) - Job jar is not present. Not adding any jar to the list of resources.
2015-07-15 16:21:27,433 INFO  [main] impl.YarnClientImpl (YarnClientImpl.java:submitApplication(273)) - Submitted application application_1436614419410_0031
2015-07-15 16:21:27,537 INFO  [main] mapreduce.Job (Job.java:submit(1294)) - The url to track the job: http://master:8088/proxy/application_1436614419410_0031/
2015-07-15 16:21:27,539 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1339)) - Running job: job_1436614419410_0031
2015-07-15 16:21:32,640 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1360)) - Job job_1436614419410_0031 running in uber mode : false
2015-07-15 16:21:32,646 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1367)) -  map 0% reduce 0%
2015-07-15 16:21:32,710 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1380)) - Job job_1436614419410_0031 failed with state FAILED due to: Application application_1436614419410_0031 failed 2 times due to AM Container for appattempt_1436614419410_0031_000002 exited with  exitCode: 1
For more detailed output, check application tracking page:http://master:8088/cluster/app/application_1436614419410_0031Then, click on links to logs of each attempt.
Diagnostics: Exception from container-launch.
Container id: container_1436614419410_0031_02_000001
Exit code: 1
Exception message: /bin/bash: line 0: fg: no job control

Stack trace: ExitCodeException exitCode=1: /bin/bash: line 0: fg: no job control

        at org.apache.hadoop.util.Shell.runCommand(Shell.java:545)
        at org.apache.hadoop.util.Shell.run(Shell.java:456)
        at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:722)
        at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:211)
        at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302)
        at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82)
        at java.util.concurrent.FutureTask.run(FutureTask.java:266)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745)


Container exited with a non-zero exit code 1
Failing this attempt. Failing the application.
2015-07-15 16:21:32,779 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1385)) - Counters: 0
[/mw_shl_code]

[mw_shl_code=java,true]package com.linewell.tomcat.logs;


import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount {
        
        /**
     * 建立Mapper类TokenizerMapper继承自泛型类Mapper
     * Mapper类:实现了Map功能基类
     * Mapper接口:
     * WritableComparable接口:实现WritableComparable的类可以相互比较。所有被用作key的类应该实现此接口。
     * Reporter 则可用于报告整个应用的运行进度,本例中未使用。
     *
     */
        public static class TokenizerMapper extends Mapper<Object,Text,Text,IntWritable> {
                /**
         * IntWritable, Text 均是 Hadoop 中实现的用于封装 Java 数据类型的类,这些类实现了WritableComparable接口,
         * 都能够被串行化从而便于在分布式环境中进行数据交换,你可以将它们分别视为int,String 的替代品。
         * 声明one常量和word用于存放单词的变量
         */
                private final static IntWritable one = new IntWritable(1);
                private Text word = new Text();
               
                /**
         * Mapper中的map方法:
         * void map(K1 key, V1 value, Context context)
         * 映射一个单个的输入k/v对到一个中间的k/v对
         * 输出对不需要和输入对是相同的类型,输入对可以映射到0个或多个输出对。
         * Context:收集Mapper输出的<k,v>对。
         * Context的write(k, v)方法:增加一个(k,v)对到context
         * 程序员主要编写Map和Reduce函数.这个Map函数使用StringTokenizer函数对字符串进行分隔,通过write方法把单词存入word中
         * write方法存入(单词,1)这样的二元组到context中
         */
                public void map(Object key,Text value,Context context)
                                throws IOException,InterruptedException {
                        StringTokenizer itr = new StringTokenizer(value.toString());
                        while(itr.hasMoreTokens()) {
                                word.set(itr.nextToken());
                                context.write(word, one);
                        }
                }
        }
        
        public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
                private IntWritable result = new IntWritable();
                /**
         * Reducer类中的reduce方法:
         * void reduce(Text key, Iterable<IntWritable> values, Context context)
         * 中k/v来自于map函数中的context,可能经过了进一步处理(combiner),同样通过context输出           
         */
                public void reduce(Text key,Iterable<IntWritable> values,Context context)
                                throws IOException,InterruptedException {
                        int sum = 0;
                        for(IntWritable val : values) {
                                sum += val.get();
                        }
                        result.set(sum);
                        context.write(key, result);
                }
        }
        
        @SuppressWarnings("deprecation")
        public static void main(String[] args) throws Exception{
                System.setProperty("hadoop.home.dir", "f:/master/hadoop");
               
                /**
         * Configuration:map/reduce的j配置类,向hadoop框架描述map-reduce执行的工作
         */
                Configuration conf = new Configuration();
                conf.set("fs.default.name", "hdfs://master:9000");
                conf.set("mapreduce.framework.name", "yarn");  
                conf.set("yarn.resourcemanager.address", "master:8032");  
                String[] ioArgs={"hdfs://master:9000/log","hdfs://master:9000/log_out"};
                String[] otherArgs = new GenericOptionsParser(conf, ioArgs).getRemainingArgs();
                if(otherArgs.length != 2) {
                        System.err.println("Usage:wordcount <in> <out>");
                        System.exit(2);
                }
                Job job = new Job(conf,"word count"); //设置一个用户定义的job名称
                job.setJarByClass(WordCount.class);
               
                //设置Map、Combine和Reduce处理类
                job.setMapperClass(TokenizerMapper.class); //为job设置Mapper类
                job.setCombinerClass(IntSumReducer.class); //为job设置Combiner类
                job.setReducerClass(IntSumReducer.class);  //为job设置Reducer类
               
                //设置输出类型
                job.setOutputKeyClass(Text.class);  //为job的输出数据设置Key类
                job.setOutputValueClass(IntWritable.class);  //为job输出设置value类
               
                //设置输入和输出目录
                FileInputFormat.addInputPath(job, new Path(otherArgs[0]));   //为job设置输入路径
                FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); //为job设置输出路径
                System.exit(job.waitForCompletion(true)? 0 : 1); //运行job
        }
}[/mw_shl_code]
回复

使用道具 举报

1234下一页
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

推荐上一条 /2 下一条