问题导读: Pig能给开发人员带来什么好处? Pig和hive有什么各自使用场景? Pig与hive有什么共同点? hive与hbase各有什么优点和缺点? 看了几天的Hadoop生态系统,对Hive,Pig,HBase搞的有些糊涂,查阅时发现糊涂的不止我一个,如某个鸟问的帖子发表的疑问,when to use Hbase and when to use Hive?....请教了google,现总结如下: Pig Pig是一种数据流语言,用来快速轻松的处理巨大的数据。Pig包含两个部分:Pig Interface,Pig Latin。Pig可以非常方便的处理HDFS和HBase的数据,和Hive一样,Pig可以非常高效的处理其需要做的,通过直接操作Pig查询可以节省大量的劳动和时间。 当你想在你的数据上做一些转换,并且不想编写MapReduce jobs就可以用Pig. Hive 起源于FaceBook,Hive在Hadoop中扮演数据仓库的角色。建立在Hadoop集群的最顶层,对存储在Hadoop群上的数据提供类SQL的接口进行操作。你可以用 HiveQL进行select,join,等等操作。 如果你有数据仓库的需求并且你擅长写SQL并且不想写MapReduce jobs就可以用Hive代替。 HBase HBase作为面向列的数据库运行在HDFS之上,HDFS缺乏随即读写操作,HBase正是为此而出现。HBase以Google BigTable为蓝本,以键值对的形式存储。项目的目标就是快速在主机内数十亿行数据中定位所需的数据并访问它。 HBase是一个数据库,一个NoSql的数据库,像其他数据库一样提供随即读写功能,Hadoop不能满足实时需要,HBase正可以满足。如果你需要实时访问一些数据,就把它存入HBase。 你可以用Hadoop作为静态数据仓库,HBase作为数据存储,放那些进行一些操作会改变的数据。
Pig VS Hive Hive更适合于数据仓库的任务,Hive主要用于静态的结构以及需要经常分析的工作。Hive与SQL相似促使 其成为Hadoop与其他BI工具结合的理想交集。 Pig赋予开发人员在大数据集领域更多的灵活性,并允许开发简洁的脚本用于转换数据流以便嵌入到较大的 应用程序。 Pig相比Hive相对轻量,它主要的优势是相比于直接使用Hadoop Java APIs可大幅削减代码量。正因为如此,Pig仍然是吸引大量的软件开发人员。 Hive和Pig都可以与HBase组合使用,Hive和Pig还为HBase提供了高层语言支持,使得在HBase上进行数据统计处理变的非常简单
Hive VS HBase Hive是建立在Hadoop之上为了减少MapReduce jobs编写工作的批处理系统,HBase是为了支持弥补Hadoop对实时操作的缺陷的项目 。 想象你在操作RMDB数据库,如果是全表扫描,就用Hive+Hadoop,如果是索引访问,就用HBase+Hadoop 。 Hive query就是MapReduce jobs可以从5分钟到数小时不止,HBase是非常高效的,肯定比Hive高效的多。
|