本帖最后由 xioaxu790 于 2014-9-6 18:19 编辑
问题导读
1、如何获取Mapreduce 包?
2、MapReduce 如何配置一个单节点集群?
Mapreduce 包
你需从发布页面获得MapReduce tar包。若不能,你要将源码打成tar包。
- $ mvn clean install -DskipTests
- $ cd hadoop-mapreduce-project
- $ mvn clean install assembly:assembly -Pnative
复制代码
注意:你需要安装有protoc 2.5.0。
忽略本地建立mapreduce,你可以在maven中省略-Pnative参数。tar包应该在target/directory。
配置环境
假设你已经安装hadoop-common/hadoop-hdfs,并且输出了$HADOOP_COMMON_HOME/$HADOOP_HDFS_HOME,解压hadoop mapreduce 包,配置环境变量$HADOOP_MAPRED_HOME到要安装的目录。$HADOOP_YARN_HOME的配置和 $HADOOP_MAPRED_HOME一样.
注意:下面的操作假设你已经运行了hdfs。
设置配置信息
要启动ResourceManager and NodeManager, 你必须升级配置。假设你的 $HADOOP_CONF_DIR是配置目录,并且已经安装了HDFS和core-site.xml。还有2个配置文件你必须设置 mapred-site.xml 和yarn-site.xml.
设置 mapred-site.xml
添加下面的配置到你的mapred-site.xml.
- <property>
- <name>mapreduce.cluster.temp.dir</name>
- <value></value>
- <description>No description</description>
- <final>true</final>
- </property>
-
- <property>
- <name>mapreduce.cluster.local.dir</name>
- <value></value>
- <description>No description</description>
- <final>true</final>
- </property>
复制代码
设置 yarn-site.xml
添加下面的配置到你的yarn-site.xml.
- <property>
- <name>yarn.resourcemanager.resource-tracker.address</name>
- <value>host:port</value>
- <description>host is the hostname of the resource manager and
- port is the port on which the NodeManagers contact the Resource Manager.
- </description>
- </property>
-
- <property>
- <name>yarn.resourcemanager.scheduler.address</name>
- <value>host:port</value>
- <description>host is the hostname of the resourcemanager and port is the port
- on which the Applications in the cluster talk to the Resource Manager.
- </description>
- </property>
-
- <property>
- <name>yarn.resourcemanager.scheduler.class</name>
- <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
- <description>In case you do not want to use the default scheduler</description>
- </property>
-
- <property>
- <name>yarn.resourcemanager.address</name>
- <value>host:port</value>
- <description>the host is the hostname of the ResourceManager and the port is the port on
- which the clients can talk to the Resource Manager. </description>
- </property>
-
- <property>
- <name>yarn.nodemanager.local-dirs</name>
- <value></value>
- <description>the local directories used by the nodemanager</description>
- </property>
-
- <property>
- <name>yarn.nodemanager.address</name>
- <value>0.0.0.0:port</value>
- <description>the nodemanagers bind to this port</description>
- </property>
-
- <property>
- <name>yarn.nodemanager.resource.memory-mb</name>
- <value>10240</value>
- <description>the amount of memory on the NodeManager in GB</description>
- </property>
-
- <property>
- <name>yarn.nodemanager.remote-app-log-dir</name>
- <value>/app-logs</value>
- <description>directory on hdfs where the application logs are moved to </description>
- </property>
-
- <property>
- <name>yarn.nodemanager.log-dirs</name>
- <value></value>
- <description>the directories used by Nodemanagers as log directories</description>
- </property>
-
- <property>
- <name>yarn.nodemanager.aux-services</name>
- <value>mapreduce_shuffle</value>
- <description>shuffle service that needs to be set for Map Reduce to run </description>
- </property>
复制代码
设置 capacity-scheduler.xml
确保你放置根队列到capacity-scheduler.xml.
- <property>
- <name>yarn.scheduler.capacity.root.queues</name>
- <value>unfunded,default</value>
- </property>
-
- <property>
- <name>yarn.scheduler.capacity.root.capacity</name>
- <value>100</value>
- </property>
-
- <property>
- <name>yarn.scheduler.capacity.root.unfunded.capacity</name>
- <value>50</value>
- </property>
-
- <property>
- <name>yarn.scheduler.capacity.root.default.capacity</name>
- <value>50</value>
- </property>
复制代码
运行守护进程
假设环境变量 $HADOOP_COMMON_HOME, $HADOOP_HDFS_HOME, $HADOO_MAPRED_HOME, $HADOOP_YARN_HOME,$JAVA_HOME 和 $HADOOP_CONF_DIR 已经设置正确。$$YARN_CONF_DIR 的设置同 $HADOOP_CONF_DIR。
运行ResourceManager 和 NodeManager 如下:
- $ cd $HADOOP_MAPRED_HOME
- $ sbin/yarn-daemon.sh start resourcemanager
- $ sbin/yarn-daemon.sh start nodemanager
复制代码
你应该启动和运行。你可以运行randomwriter如下:
- $ $HADOOP_COMMON_HOME/bin/hadoop jar hadoop-examples.jar randomwriter out
复制代码
祝你好运。
|