阅读导读:
1.如何使用Scala编写一个对Apache访问日志的分析器?
2.如何在Linux命令行启动Spark?
3.如何确定一个URL访问页面,什么导致访问页面错误?
首先需要安装好Java和Scala,然后下载Spark安装,确保PATH 和JAVA_HOME 已经设置,然后需要使用Scala的SBT 构建Spark如下:
复制代码
构建时间比较长。构建完成后,通过运行下面命令确证安装成功:
复制代码
- scala> val textFile = sc.textFile("README.md") // 创建一个指向 README.md 引用
- scala> textFile.count // 对这个文件内容行数进行计数
- scala> textFile.first // 打印出第一行
复制代码
Apache访问日志分析器
首先我们需要使用Scala编写一个对Apache访问日志的分析器,所幸已经有人编写完成,下载Apache logfile parser code。使用SBT进行编译打包:
- sbt compile
- sbt test
- sbt package
复制代码
打包名称假设为AlsApacheLogParser.jar。
然后在Linux命令行启动Spark:
- // this works
- $ MASTER=local[4] SPARK_CLASSPATH=AlsApacheLogParser.jar ./bin/spark-shell
复制代码
对于Spark 0.9,有些方式并不起效:
- // does not work
- $ MASTER=local[4] ADD_JARS=AlsApacheLogParser.jar ./bin/spark-shell
复制代码
- // does not work
- spark> :cp AlsApacheLogParser.jar
复制代码
上传成功后,在Spark REPL创建AccessLogParser 实例:
- import com.alvinalexander.accesslogparser._
- val p = new AccessLogParser
复制代码
现在就可以像之前读取readme.cmd一样读取apache访问日志accesslog.small:
- scala> val log = sc.textFile("accesslog.small")
- 14/03/09 11:25:23 INFO MemoryStore: ensureFreeSpace(32856) called with curMem=0, maxMem=309225062
- 14/03/09 11:25:23 INFO MemoryStore: Block broadcast_0 stored as values to memory (estimated size 32.1 KB, free 294.9 MB)
- log: org.apache.spark.rdd.RDD[String] = MappedRDD[1] at textFile at <console>:15
- scala> log.count
- (a lot of output here)
- res0: Long = 100000
复制代码
分析Apache日志
我们可以分析Apache日志中404有多少个,创建方法如下:
- def getStatusCode(line: Option[AccessLogRecord]) = {
-
- line match {
-
- case Some(l) => l.httpStatusCode
-
- case None => "0"
-
- }
- }
复制代码
其中Option[AccessLogRecord]是分析器的返回值。然后在Spark命令行使用如下:
- log.filter(line => getStatusCode(p.parseRecord(line)) == "404").count
复制代码
这个统计将返回httpStatusCode是404的行数。
深入挖掘
下面如果我们想知道哪些URL是有问题的,比如URL中有一个空格等导致404错误,显然需要下面步骤:
过滤出所有 404 记录
从每个404记录得到request字段(分析器请求的URL字符串是否有空格等)
不要返回重复的记录
创建下面方法:
- // get the `request` field from an access log record
-
- def getRequest(rawAccessLogString: String): Option[String] = {
-
- val accessLogRecordOption = p.parseRecord(rawAccessLogString)
-
- accessLogRecordOption match {
-
- case Some(rec) => Some(rec.request)
-
- case None => None
-
- }
-
- }
复制代码
将这些代码贴入Spark REPL,再运行如下代码:
- log.filter(line => getStatusCode(p.parseRecord(line)) == "404").map(getRequest(_)).count
-
- val recs = log.filter(line => getStatusCode(p.parseRecord(line)) == "404").map(getRequest(_))
-
- val distinctRecs = log.filter(line => getStatusCode(p.parseRecord(line)) == "404").map(getRequest
-
- (_)).distinct
-
- distinctRecs.foreach(println)
复制代码
总结
对于访问日志简单分析当然是要grep比较好,但是更复杂的查询就需要Spark了。很难判断 Spark在单个系统上的性能。这是因为Spark是针对分布式系统大文件。
|