storm-kafka源码走读之自定义Scheme(1)
问题导读1、如何学习简单的StringScheme实现?
2、通过什么发射String,效率会更高一点?
3、在哪个环节解析message时调用scheme信息?
static/image/hrline/4.gif
使用KafkaSpout需要子类实现Scheme,storm-kafka实现了StringScheme,KeyValueStringScheme等等,大家可以用。
这些Scheme主要负责从消息流中解析出所需要的数据。
public interface Scheme extends Serializable {
public List<Object> deserialize(byte[] ser);
public Fields getOutputFields();
}
需要实现反序列化方法和输出fields名称,来看简单StringScheme实现:
public class StringScheme implements Scheme {
public static final String STRING_SCHEME_KEY = "str";
public List<Object> deserialize(byte[] bytes) {
return new Values(deserializeString(bytes));
}
public static String deserializeString(byte[] string) {
try {
return new String(string, "UTF-8");
} catch (UnsupportedEncodingException e) {
throw new RuntimeException(e);
}
}
public Fields getOutputFields() {
return new Fields(STRING_SCHEME_KEY);
}
}
其实就是直接返回了一个String,在Spout往后发射时就一个字段,其名为“str”,如果采用StringScheme时,大家在Bolt中可以用
tuple.getStringByField("str")
来获取其值。有人有疑问前面为什么用new SchemeAsMultiScheme(new StringScheme())呐?来看SchemeAsMultiScheme代码
public class SchemeAsMultiScheme implements MultiScheme {
public final Scheme scheme;
public SchemeAsMultiScheme(Scheme scheme) {
this.scheme = scheme;
}
@Override public Iterable<List<Object>> deserialize(final byte[] ser) {
List<Object> o = scheme.deserialize(ser);
if(o == null) return null;
else return Arrays.asList(o);
}
@Override public Fields getOutputFields() {
return scheme.getOutputFields();
}
}
public interface MultiScheme extends Serializable {
public Iterable<List<Object>> deserialize(byte[] ser);
public Fields getOutputFields();
}
其实本身还是调用了传入的scheme方法,只不过返回结果组合成一个list而已,小弟觉得不用也可以。但是storm-kafka里面默认是需要的,在KafkaUtils解析message时调用scheme信息:
public static Iterable<List<Object>> generateTuples(KafkaConfig kafkaConfig, Message msg) {
Iterable<List<Object>> tups;
ByteBuffer payload = msg.payload();
if (payload == null) {
return null;
}
ByteBuffer key = msg.key();
if (key != null && kafkaConfig.scheme instanceof KeyValueSchemeAsMultiScheme) {
tups = ((KeyValueSchemeAsMultiScheme) kafkaConfig.scheme).deserializeKeyAndValue(Utils.toByteArray(key), Utils.toByteArray(payload));
} else {
tups = kafkaConfig.scheme.deserialize(Utils.toByteArray(payload));
}
return tups;
}
所以没什么大的需求还是用storm-kafka默认的吧。
例子
kafka收到的message多种多样,而且往下发射的信息页多种多样,所以很多时候我们需要自己写scheme,下面举2个例子
example 1
第一:一般默认发射一个field,但是如果我需要多发几个fields的话,该怎么办呐,现在发射2个,其实网上已有大牛,把kafka的offset加到了发射的信息中去,分析的过程如下:
//returns false if it's reached the end of current batch
public EmitState next(SpoutOutputCollector collector) {
if (_waitingToEmit.isEmpty()) {
fill();
}
while (true) {
MessageAndRealOffset toEmit = _waitingToEmit.pollFirst();
if (toEmit == null) {
return EmitState.NO_EMITTED;
}
Iterable<List<Object>> tups = KafkaUtils.generateTuples(_spoutConfig, toEmit.msg);
if (tups != null) {
for (List<Object> tup : tups) {
collector.emit(tup, new KafkaMessageId(_partition, toEmit.offset));
}
break;
} else {
ack(toEmit.offset);
}
}
if (!_waitingToEmit.isEmpty()) {
return EmitState.EMITTED_MORE_LEFT;
} else {
return EmitState.EMITTED_END;
}
}
从上面看出,发射tuple时已经把offset作为messageId往下发射了,所以我们认为在下面接收tuple的Bolt中可以通过messageId获取offset,但是我们再来看看backtype.storm.daemon.executor 的代码:
(log-message"Opening spout " component-id ":" (keys task-datas))
(doseq[task-datas
:let[^ISpout spout-obj (:objecttask-data)
tasks-fn(:tasks-fntask-data)
send-spout-msg (fn
(.increment emitted-count)
(let[out-tasks (ifout-task-id
(tasks-fnout-task-id out-stream-id values)
(tasks-fnout-stream-id values))
rooted? (andmessage-id has-ackers?)
root-id (ifrooted? (MessageId/generateId rand))
out-ids (fast-list-for(ifrooted? (MessageId/generateId rand)))]
从这段代码可以看出,messageId是随机生成的,跟之前kafkaSpout 锚定的new KafkaMessageId(_partition, toEmit.offset)一点关系都没有,所以需要自己手动把offset加到发射的tuple中去,这就需要我们自己实现Scheme了,代码如下:
publicclass KafkaOffsetWrapperScheme implements Scheme {
public static final String SCHEME_OFFSET_KEY = "offset";
private String _offsetTupleKeyName;
private Scheme _localScheme;
public KafkaOffsetWrapperScheme() {
_localScheme = new StringScheme();
_offsetTupleKeyName = SCHEME_OFFSET_KEY;
}
public KafkaOffsetWrapperScheme(Scheme localScheme,
String offsetTupleKeyName) {
_localScheme = localScheme;
_offsetTupleKeyName = offsetTupleKeyName;
}
public KafkaOffsetWrapperScheme(Scheme localScheme) {
this(localScheme, SCHEME_OFFSET_KEY);
}
public List<Object> deserialize(byte[] bytes) {
return_localScheme.deserialize(bytes);
}
publicFields getOutputFields() {
List<String> outputFields = _localScheme
.getOutputFields()
.toList();
outputFields.add(_offsetTupleKeyName);
returnnew Fields(outputFields);
}
}
这里的scheme输出是两个fields,一个是str,由StringScheme负责反序列化,或者自己实现其他的scheme;一个是offset,但是offset如何加到发射的tuple中呐??我们从PartitionManager中找到被发射的tuple
public EmitState next(SpoutOutputCollector collector) {
if (_waitingToEmit.isEmpty()) {
fill();
}
while (true) {
MessageAndRealOffset toEmit = _waitingToEmit.pollFirst();
if (toEmit == null) {
return EmitState.NO_EMITTED;
}
Iterable<List<Object>> tups = KafkaUtils.generateTuples(_spoutConfig, toEmit.msg);
if (tups != null) {
for (List<Object> tup : tups) {
tup.add(toEmit.offset);
collector.emit(tup, new KafkaMessageId(_partition, toEmit.offset));
}
break;
} else {
ack(toEmit.offset);
}
}
if (!_waitingToEmit.isEmpty()) {
return EmitState.EMITTED_MORE_LEFT;
} else {
return EmitState.EMITTED_END;
}
}
KafkaUtils.generateTuples(xxx,xxx)
public static Iterable<List<Object>> generateTuples(KafkaConfig kafkaConfig, Message msg) {
Iterable<List<Object>> tups;
ByteBuffer payload = msg.payload();
if (payload == null) {
return null;
}
ByteBuffer key = msg.key();
if (key != null && kafkaConfig.scheme instanceof KeyValueSchemeAsMultiScheme) {
tups = ((KeyValueSchemeAsMultiScheme) kafkaConfig.scheme).deserializeKeyAndValue(Utils.toByteArray(key), Utils.toByteArray(payload));
} else {
tups = kafkaConfig.scheme.deserialize(Utils.toByteArray(payload));
}
return tups;
}
目前我们已经成功把offset加到了发射的tuple中,在bolt中,可以通过tuple.getValue(1),或tuple.getStringByField("offset");来或者
唯一要做的就是在构建SpoutConfig时,指定scheme为KafkaOffsetWrapperScheme
example 2
第二,kafka里面的存的message是其他格式的,如thrift,avro,protobuf格式,那这样就需要自己实现反序列化的过程
这里以avro scheme格式为例(这里就不对avro扫盲了,自己google一下吧)
这时kafka中存放的是avro格式的message,如果avro schema如下
{"namespace": "example.avro",
"type": "record",
"name": "User",
"fields": [
{"name": "name", "type": "string"},
{"name": "favorite_number","type": ["int", "null"]},
{"name": "favorite_color", "type": ["string", "null"]}
]
}
那我们需要实现Scheme接口
public class AvroMessageScheme implements Scheme{
private final static Logger logger = LoggerFactory.getLogger(AvroMessageScheme.class);
private GenericRecord e2;
private AvroRecord avroRecord;
public AvroMessageScheme() {
}
@Override
public List<Object> deserialize(byte[] bytes) {
e2 = null;
avroRecord = null;
try {
InputStream is = Thread.currentThread().getContextClassLoader().getResourceAsStream("examples.avsc");
Schema schema = new Schema.Parser().parse(is);
DatumReader<GenericRecord> datumReader = new GenericDatumReader<GenericRecord>(schema);
Decoder decoder = DecoderFactory.get().binaryDecoder(bytes, null);
e2 = datumReader.read(null, decoder);
avroRecord = new AvroRecord(e2);
} catch (Exception e) {
e.printStackTrace();
return new Values(avroRecord);
}
return new Values(avroRecord);
}
@Override
public Fields getOutputFields() {
return new Fields("msg");
}
}
这里往下面发射的是一个POJO类,其实完全可以发射String。这样效率会更高一点。
其AvroRecord POJO如下
public class AvroRecord implements Serializable {
private String name;
private int favorite_number;
private String favorite_color;
public AvroRecord(GenericRecord gr) {
try {
this.name = String.valueOf(gr.get("name"));
this.favorite_number = Integer.parseInt(gr.get("favorite_number"));
this.favorite_color = gr.get("favorite_color").toString();
} catch (Exception e) {
logger.error("read AvroRecord error!");
}
}
@Override
public String toString() {
return "AvroRecord{" +
"name='" + name + '\'' +
", favorite_number=" + favorite_number +
", favorite_color='" + favorite_color + '\'' +
'}';
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public String getFavorite_color() {
return favorite_color;
}
public void setFavorite_color(String favorite_color) {
this.favorite_color = favorite_color;
}
public int getFavorite_number() {
return favorite_number;
}
public void setFavorite_number(int favorite_number) {
this.favorite_number = favorite_number;
}
}该例子笔者未经过测试,望慎重使用
相关内容:
storm-kafka源码走读之KafkaSpout(2)
storm-kafka源码走读之PartitionManager(3)
页:
[1]