Spark SQL Catalyst源码分析之TreeNode Library(2)
问题导读1、TreeNode有哪三种形态?
2、Spark SQL的Catalyst框架核心有哪些类库?
3、TreeNode的核心方法是什么?
static/image/hrline/4.gif
前几篇文章介绍了Spark SQL的Catalyst的核心运行流程、SqlParser,和Analyzer,本来打算直接写Optimizer的,但是发现忘记介绍TreeNode这个Catalyst的核心概念,介绍这个可以更好的理解Optimizer是如何对Analyzed Logical Plan进行优化的生成Optimized Logical Plan,本文就将TreeNode基本架构进行解释。
一、TreeNode类型
TreeNode Library是Catalyst的核心类库,语法树的构建都是由一个个TreeNode组成。TreeNode本身是一个BaseType <: TreeNode 的类型,并且实现了Product这个trait,这样可以存放异构的元素了。
TreeNode有三种形态:BinaryNode、UnaryNode、Leaf Node.
在Catalyst里,这些Node都是继承自Logical Plan,可以说每一个TreeNode节点就是一个Logical Plan(包含Expression)(直接继承自TreeNode)
主要继承关系类图如下:
1、BinaryNode
二元节点,即有左右孩子的二叉节点
[] that has two children, [] and [].
trait BinaryNode] {
def left: BaseType
def right: BaseType
def children = Seq(left, right)
}
abstract class BinaryNode extends LogicalPlan with trees.BinaryNode {
self: Product =>
}
节点定义比较简单,左孩子,右孩子都是BaseType。 children是一个Seq(left, right)
下面列出主要继承二元节点的类,可以当查询手册用 :)
这里提示下平常常用的二元节点:Join和Union
2、UnaryNode
一元节点,即只有一个孩子节点
A [] with a single [].
trait UnaryNode] {
def child: BaseType
def children = child :: Nil
}
abstract class UnaryNode extends LogicalPlan with trees.UnaryNode {
self: Product =>
}
下面列出主要继承一元节点的类,可以当查询手册用 :)
常用的二元节点有,Project,Subquery,Filter,Limit ...等
3、Leaf Node
叶子节点,没有孩子节点的节点。
A [] with no children.
trait LeafNode] {
def children = Nil
}
abstract class LeafNode extends LogicalPlan with trees.LeafNode {
self: Product =>
// Leaf nodes by definition cannot reference any input attributes.
override def references = Set.empty
}
下面列出主要继承叶子节点的类,可以当查询手册用 :)
提示常用的叶子节点: Command类系列,一些Funtion函数,以及Unresolved Relation...etc.
二、TreeNode 核心方法
简单介绍一个TreeNode这个类的属性和方法
currentId
一颗树里的TreeNode有个唯一的id,类型是java.util.concurrent.atomic.AtomicLong原子类型。
private val currentId = new java.util.concurrent.atomic.AtomicLong
protected def nextId() = currentId.getAndIncrement()
sameInstance
判断2个实例是否是同一个的时候,只需要判断TreeNode的id。
def sameInstance(other: TreeNode): Boolean = {
this.id == other.id
}
fastEquals,更常用的一个快捷的判定方法,没有重写Object.Equals,这样防止scala编译器生成case class equals 方法
view plaincopy
def fastEquals(other: TreeNode): Boolean = {
sameInstance(other) || this == other
}
map,flatMap,collect都是递归的对子节点进行应用PartialFunction,其它方法还有很多,篇幅有限这里不一一描述了。
2.1、核心方法 transform 方法
transform该方法接受一个PartialFunction,就是就是前一篇文章Analyzer里提到的Batch里面的Rule。
是会将Rule迭代应用到该节点的所有子节点,最后返回这个节点的副本(一个和当前节点不同的节点,后面会介绍,其实就是利用反射来返回一个修改后的节点)。
如果rule没有对一个节点进行PartialFunction的操作,就返回这个节点本身。
来看一个例子:
object GlobalAggregates extends Rule {
def apply(plan: LogicalPlan): LogicalPlan = plan transform { //apply方法这里调用了logical plan(TreeNode) 的transform方法来应用一个PartialFunction。
case Project(projectList, child) if containsAggregates(projectList) =>
Aggregate(Nil, projectList, child)
}
def containsAggregates(exprs: Seq): Boolean = {
exprs.foreach(_.foreach {
case agg: AggregateExpression => return true
case _ =>
})
false
}
}
这个方法真正的调用是transformChildrenDown,这里提到了用先序遍历来对子节点进行递归的Rule应用。
如果在对当前节点应用rule成功,修改后的节点afterRule,来对其children节点进行rule的应用。
transformDown方法:
/**
* Returns a copy of this node where `rule` has been recursively applied to it and all of its
* children (pre-order). When `rule` does not apply to a given node it is left unchanged.
* @param rule the function used to transform this nodes children
*/
ef transformDown(rule: PartialFunction): BaseType = {
val afterRule = rule.applyOrElse(this, identity)
// Check if unchanged and then possibly return old copy to avoid gc churn.
if (this fastEquals afterRule) {
transformChildrenDown(rule)//修改前节点this.transformChildrenDown(rule)
} else {
afterRule.transformChildrenDown(rule) //修改后节点进行transformChildrenDown
}
最重要的方法transformChildrenDown:
对children节点进行递归的调用PartialFunction,利用最终返回的newArgs来生成一个新的节点,这里调用了makeCopy()来生成节点。
transformChildrenDown方法:
/**
* Returns a copy of this node where `rule` has been recursively applied to all the children of
* this node.When `rule` does not apply to a given node it is left unchanged.
* @param rule the function used to transform this nodes children
*/
def transformChildrenDown(rule: PartialFunction): this.type = {
var changed = false
val newArgs = productIterator.map {
case arg: TreeNode if children contains arg =>
val newChild = arg.asInstanceOf.transformDown(rule) //递归子节点应用rule
if (!(newChild fastEquals arg)) {
changed = true
newChild
} else {
arg
}
case Some(arg: TreeNode) if children contains arg =>
val newChild = arg.asInstanceOf.transformDown(rule)
if (!(newChild fastEquals arg)) {
changed = true
Some(newChild)
} else {
Some(arg)
}
case m: Map => m
case args: Traversable => args.map {
case arg: TreeNode if children contains arg =>
val newChild = arg.asInstanceOf.transformDown(rule)
if (!(newChild fastEquals arg)) {
changed = true
newChild
} else {
arg
}
case other => other
}
case nonChild: AnyRef => nonChild
case null => null
}.toArray
if (changed) makeCopy(newArgs) else this //根据作用结果返回的newArgs数组,反射生成新的节点副本。
}
makeCopy方法,反射生成节点副本
/**
* Creates a copy of this type of tree node after a transformation.
* Must be overridden by child classes that have constructor arguments
* that are not present in the productIterator.
* @param newArgs the new product arguments.
*/
def makeCopy(newArgs: Array): this.type = attachTree(this, "makeCopy") {
try {
val defaultCtor = getClass.getConstructors.head//反射获取默认构造函数的第一个
if (otherCopyArgs.isEmpty) {
defaultCtor.newInstance(newArgs: _*).asInstanceOf //反射生成当前节点类型的节点
} else {
defaultCtor.newInstance((newArgs ++ otherCopyArgs).toArray: _*).asInstanceOf //如果还有其它参数,++
}
} catch {
case e: java.lang.IllegalArgumentException =>
throw new TreeNodeException(
this, s"Failed to copy node.Is otherCopyArgs specified correctly for $nodeName? "
+ s"Exception message: ${e.getMessage}.")
}
}
三、TreeNode实例
现在准备从一段sql来出发,画一下这个spark sql的整体树的transformation。
SELECT * FROM (SELECT * FROM src) a join (select * from src)b on a.key=b.key
首先,我们先执行一下,在控制台里看一下生成的计划:
<span style="font-size:12px;">sbt/sbt hive/console
Using /usr/java/default as default JAVA_HOME.
Note, this will be overridden by -java-home if it is set.
Loading project definition from /app/hadoop/shengli/spark/project/project
Loading project definition from /app/hadoop/shengli/spark/project
Set current project to root (in build file:/app/hadoop/shengli/spark/)
Starting scala interpreter...
import org.apache.spark.sql.catalyst.analysis._
import org.apache.spark.sql.catalyst.dsl._
import org.apache.spark.sql.catalyst.errors._
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.logical._
import org.apache.spark.sql.catalyst.rules._
import org.apache.spark.sql.catalyst.types._
import org.apache.spark.sql.catalyst.util._
import org.apache.spark.sql.execution
import org.apache.spark.sql.hive._
import org.apache.spark.sql.hive.test.TestHive._
import org.apache.spark.sql.parquet.ParquetTestData
scala> val query = sql("SELECT * FROM (SELECT * FROM src) a join (select * from src)b on a.key=b.key")</span>
3.1、UnResolve Logical Plan
第一步生成UnResolve Logical Plan 如下:
scala> query.queryExecution.logical
res0: org.apache.spark.sql.catalyst.plans.logical.LogicalPlan =
Project [*]
Join Inner, Some(('a.key = 'b.key))
Subquery a
Project [*]
UnresolvedRelation None, src, None
Subquery b
Project [*]
UnresolvedRelation None, src, None
如果画成树是这样的,仅个人理解:
我将一开始介绍的三种Node分别用绿色UnaryNode,红色Binary Node 和 蓝色 LeafNode 来表示。
3.2、Analyzed Logical Plan
Analyzer会将允用Batch的Rules来对Unresolved LogicalPlan Tree 进行rule应用,这里用来EliminateAnalysisOperators将Subquery给消除掉,Batch("Resolution将Atrribute和Relation给Resolve了,Analyzed Logical Plan Tree如下图:
3.3、Optimized Plan
我把Catalyst里的Optimizer戏称为Spark SQL的优化大师,因为整个Spark SQL的优化都是在这里进行的,后面会有文章来讲解Optimizer。
在这里,优化的不明显,因为SQL本身不复杂
scala> query.queryExecution.optimizedPlan
res3: org.apache.spark.sql.catalyst.plans.logical.LogicalPlan =
Project
Join Inner, Some((key#0 = key#2))
MetastoreRelation default, src, None
MetastoreRelation default, src, None
生成的树如下图:
3.4、executedPlan
最后一步是最终生成的物理执行计划,里面涉及到了Hive的TableScan,涉及到了HashJoin操作,还涉及到了Exchange,Exchange涉及到了Shuffle和Partition操作。
scala> query.queryExecution.executedPlan
res4: org.apache.spark.sql.execution.SparkPlan =
Project
HashJoin , , BuildRight
Exchange (HashPartitioning , 150)
HiveTableScan , (MetastoreRelation default, src, None), None
Exchange (HashPartitioning , 150)
HiveTableScan , (MetastoreRelation default, src, None), None
生成的物理执行树如图:
四、总结:
本文介绍了Spark SQL的Catalyst框架核心TreeNode类库,绘制了TreeNode继承关系的类图,了解了TreeNode这个类在Catalyst所起到的作用。语法树中的Logical Plan均派生自TreeNode,并且Logical Plan派生出TreeNode的三种形态,即Binary Node, Unary Node, Leaft Node。 正式这几种节点,组成了Spark SQl的Catalyst的语法树。
TreeNode的transform方法是核心的方法,它接受一个rule,会对当前节点的孩子节点进行递归的调用rule,最后会返回一个TreeNode的copy,这种操作就是transformation,贯穿了Spark SQL执行的几个核心阶段,如Analyze,Optimize阶段。
最后用一个实际的例子,展示出来Spark SQL的执行树生成流程。
太详细了 http://www.aboutyun.com/thread-10623-1-3.html
页:
[1]