xioaxu790 发表于 2014-12-16 13:49:44

Spark SQL 源码分析之 In-Memory Columnar Storage 之 in-memory query(8)

问题导读
1、 in-memory 有哪些典型技术?
2、如何理解InMemoryColumnarTableScan在Catalyst中的作用?
3、怎样理解ColumnAccessor的类?

static/image/hrline/4.gif



前面讲到了Spark SQL In-Memory Columnar Storage的存储结构是基于列存储的。
    那么基于以上存储结构,我们查询cache在jvm内的数据又是如何查询的,本文将揭示查询In-Memory Data的方式。

一、引子
本例使用hive console里查询cache后的src表。
select value from src
当我们将src表cache到了内存后,再次查询src,可以通过analyzed执行计划来观察内部调用。
即parse后,会形成InMemoryRelation结点,最后执行物理计划时,会调用InMemoryColumnarTableScan这个结点的方法。
如下:
scala> val exe = executePlan(sql("select value from src").queryExecution.analyzed)
14/09/26 10:30:26 INFO parse.ParseDriver: Parsing command: select value from src
14/09/26 10:30:26 INFO parse.ParseDriver: Parse Completed
exe: org.apache.spark.sql.hive.test.TestHive.QueryExecution =   
== Parsed Logical Plan ==
Project
InMemoryRelation , false, 1000, (HiveTableScan , (MetastoreRelation default, src, None), None)

== Analyzed Logical Plan ==
Project
InMemoryRelation , false, 1000, (HiveTableScan , (MetastoreRelation default, src, None), None)

== Optimized Logical Plan ==
Project
InMemoryRelation , false, 1000, (HiveTableScan , (MetastoreRelation default, src, None), None)

== Physical Plan ==
InMemoryColumnarTableScan , (InMemoryRelation , false, 1000, (HiveTableScan , (MetastoreRelation default, src, None), None)) //查询内存中表的入口

Code Generation: false
== RDD ==


二、InMemoryColumnarTableScan
InMemoryColumnarTableScan是Catalyst里的一个叶子结点,包含了要查询的attributes,和InMemoryRelation(封装了我们缓存的In-Columnar Storage数据结构)。
执行叶子节点,出发execute方法对内存数据进行查询。
1、查询时,调用InMemoryRelation,对其封装的内存数据结构的每个分区进行操作。
2、获取要请求的attributes,如上,查询请求的是src表的value属性。
3、根据目的查询表达式,来获取在对应存储结构中,请求列的index索引。
4、通过ColumnAccessor来对每个buffer进行访问,获取对应查询数据,并封装为Row对象返回。


private case class InMemoryColumnarTableScan(
    attributes: Seq,
    relation: InMemoryRelation)
extends LeafNode {


override def output: Seq = attributes


override def execute() = {
    relation.cachedColumnBuffers.mapPartitions { iterator =>
      // Find the ordinals of the requested columns.If none are requested, use the first.
      val requestedColumns = if (attributes.isEmpty) {
      Seq(0)
      } else {
      attributes.map(a => relation.output.indexWhere(_.exprId == a.exprId)) //根据表达式exprId找出对应列的ByteBuffer的索引
      }


      iterator
      .map(batch => requestedColumns.map(batch(_)).map(ColumnAccessor(_)))//根据索引取得对应请求列的ByteBuffer,并封装为ColumnAccessor。
      .flatMap { columnAccessors =>
          val nextRow = new GenericMutableRow(columnAccessors.length) //Row的长度
          new Iterator {
            override def next() = {
            var i = 0
            while (i < nextRow.length) {
                columnAccessors(i).extractTo(nextRow, i) //根据对应index和长度,从byterbuffer里取得值,封装到row里
                i += 1
            }
            nextRow
            }


            override def hasNext = columnAccessors.head.hasNext
          }
      }
    }
}
}

查询请求的列,如下:
scala> exe.optimizedPlan
res93: org.apache.spark.sql.catalyst.plans.logical.LogicalPlan =   
Project
InMemoryRelation , false, 1000, (HiveTableScan , (MetastoreRelation default, src, None), None)


scala> val relation =exe.optimizedPlan(1)
relation: org.apache.spark.sql.catalyst.plans.logical.LogicalPlan =   
InMemoryRelation , false, 1000, (HiveTableScan , (MetastoreRelation default, src, None), None)


scala> val request_relation = exe.executedPlan
request_relation: org.apache.spark.sql.execution.SparkPlan =   
InMemoryColumnarTableScan , (InMemoryRelation , false, 1000, (HiveTableScan , (MetastoreRelation default, src, None), None))


scala> request_relation.output //请求的列,我们请求的只有value列
res95: Seq = ArrayBuffer(value#5)

scala> relation.output //默认保存在relation中的所有列
res96: Seq = ArrayBuffer(key#4, value#5)


scala> val attributes = request_relation.output   
attributes: Seq = ArrayBuffer(value#5)

整个流程很简洁,关键步骤是第三步。根据ExprId来查找到,请求列的索引
attributes.map(a => relation.output.indexWhere(_.exprId == a.exprId))
//根据exprId找出对应ID
scala> val attr_index = attributes.map(a => relation.output.indexWhere(_.exprId == a.exprId))
attr_index: Seq = ArrayBuffer(1) //找到请求的列value的索引是1, 我们查询就从Index为1的bytebuffer中,请求数据

scala> relation.output.foreach(e=>println(e.exprId))
ExprId(4)    //对应<span style="font-family: Arial, Helvetica, sans-serif;"></span>
ExprId(5)

scala> request_relation.output.foreach(e=>println(e.exprId))
ExprId(5)


三、ColumnAccessor
ColumnAccessor对应每一种类型,类图如下:



最后返回一个新的迭代器:
new Iterator {
override def next() = {
    var i = 0
    while (i < nextRow.length) { //请求列的长度
      columnAccessors(i).extractTo(nextRow, i)//调用columnType.setField(row, ordinal, extractSingle(buffer))解析buffer
      i += 1
    }
    nextRow//返回解析后的row
}

override def hasNext = columnAccessors.head.hasNext
}


四、总结
    Spark SQL In-Memory Columnar Storage的查询相对来说还是比较简单的,其查询思想主要和存储的数据结构有关。
    即存储时,按每列放到一个bytebuffer,形成一个bytebuffer数组。
    查询时,根据请求列的exprId查找到上述数组的索引,然后使用ColumnAccessor对buffer中字段进行解析,最后封装为Row对象,返回。

页: [1]
查看完整版本: Spark SQL 源码分析之 In-Memory Columnar Storage 之 in-memory query(8)