Apache Spark源码走读之20 -- ShuffleMapTask计算结果的保存与读取
本帖最后由 pig2 于 2015-1-6 14:17 编辑问题导读
1.Shuffle数据的写入和读取过程是怎样的?
2.HashShuffleReader中的read函数的具体实现是怎样的?
static/image/hrline/4.gif
概要ShuffleMapTask的计算结果保存在哪,随后Stage中的task又是如何知道从哪里去读取的呢,这个过程一直让我困惑不已。
用比较通俗一点的说法来解释一下Shuffle数据的写入和读取过程
[*]每一个task负责处理一个特定的data partition
[*]task在初始化的时候就已经明确处理结果可能会产生多少个不同的data partition
[*]利用partitioner函数,task将处理结果存入到不同的partition,这些数据存放在当前task执行的机器上
[*]假设当前是stage 2有两个task, stage 2可能输出4个不同的data partition, task 0和task 1各自运行于不同的机器上,task 0中的部分处理结果会存入到data partition 0,task 1的部分处理结果也可能存入到data partition 0.
[*]由于stage 2产生了4个不同的data partition, 后续stage 1中的task个数就为4. task 0 就负责读取data partition 0的数据,对于(stage1, task0)来说,所要读取的data partition 0的内容由task 0和task 1中的partition 0共同组成。
[*]现在问题的关键转换成为(stage_1, task_0)如何知道(stage_2, task_x)有没有相应的输出是属于data partition 0的呢?这个问题的解决就是MapStatus
[*]每一个ShuffleMapTask在执行结束,都会上报一个MapStatus,在MapStatus中会反应出朝哪些data partition写入了数据,写入了数据则size为非零值,否则为零值
[*](stage_1,task_0)会去获取stage_2中所有task的MapStatus,以判定(stage_2, task_x)产生的数据中有自己需要读入的内容
[*]假设(stage_1,task_0)知道(stage_2, task_0)生成了data partition 0中的数据,于是去(stage_2, task_0)运行时的机器去获取具体的数据,如果恰巧这个时候远端机器已经挂掉了,获取失败,怎么办?
[*]上报异常,由DAGScheduler重新调度(stage_2,task_0),重新生成所需要的数据。
[*]Spark不像Hadoop中的MapReduce有一个明显的combine阶段,在spark中combine过程有两次调用,一是Shuffle数据写入过程,另一个是Shuffle数据读取过程。
如果能够明白上述的过程,并对应到相应的代码,那就无须看下述的详细解释了。好了,让我们开始代码跟踪吧。
数据写入过程
数据写入动作最原始的触发点是ShuffleMapTask.runTask函数,看一看源码先。
override def runTask(context: TaskContext): MapStatus = {
metrics = Some(context.taskMetrics)
var writer: ShuffleWriter = null
try {
val manager = SparkEnv.get.shuffleManager
writer = manager.getWriter(dep.shuffleHandle, partitionId, context)
writer.write(rdd.iterator(split, context).asInstanceOf[Iterator[_
if (writer != null) {
writer.stop(success = false)
}
throw e
} finally {
context.executeOnCompleteCallbacks()
}
}
managerGetWriter返回的是HashShuffleWriter,所以调用过程是ShuffleMapTask.runTask->HashShuffleWriter.write->BlockObjectWriter.write. 注意dep.mapSideCombine这一分支判断。ReduceByKey(_ + _)中的(_ + _)在此处被执行一次,另一次执行是在read过程。
override def write(records: Iterator]): Unit = {
val iter = if (dep.aggregator.isDefined) {
if (dep.mapSideCombine) {
dep.aggregator.get.combineValuesByKey(records, context)
} else {
records
}
} else if (dep.aggregator.isEmpty && dep.mapSideCombine) {
throw new IllegalStateException("Aggregator is empty for map-side combine")
} else {
records
}
for (elem <- iter) {
val bucketId = dep.partitioner.getPartition(elem._1)
shuffle.writers(bucketId).write(elem)
}
HashShuffleWriter.write中主要处理两件事
[*]判断是否需要进行聚合,比如<hello,1>和<hello,1>都要写入的话,那么先生成<hello,2>然后再进行后续的写入工作
[*]利用Partitioner函数来决定<k,val>写入到哪一个文件中
Partitioner是在什么时候注入的,RDD抽象类中,Partitioner为空?以reduceByKey为例,HashPartitioner会在后面combineByKey的代码创建ShuffledRDD的时候作为ShuffledRDD的构造函数传入。
def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)] = {
reduceByKey(new HashPartitioner(numPartitions), func)
}
Stage在创建的时候通过构造函数入参明确需要从多少Partition读取数据,生成的Partition会有多少。看一看Stage的构造函数,读取的分区数目由RDD.partitions.size决定,输出的partitions由shuffleDep决定。
private class Stage(
val id: Int,
val rdd: RDD,
val numTasks: Int,
val shuffleDep: Option],// Output shuffle if stage is a map stage
val parents: List,
val jobId: Int,
val callSite: CallSite)
extends Logging {
val isShuffleMap = shuffleDep.isDefined
val numPartitions = rdd.partitions.size
val outputLocs = Array.fill](numPartitions)(Nil)
var numAvailableOutputs = 0
private var nextAttemptId = 0回到数据写入的问题上来,结果写入时的一个主要问题就是已经知道shuffle_id, map_id和要写入的elem,如何找到对应的写入文件。每一个临时文件由三元组(shuffle_id,map_id,reduce_id)来决定,当前已经知道了两个,还剩下一下reduce_id待确定。
reduce_id是使用partitioner计算出来的结果,输入的是elem的键值。也就是dep.partitioner.getPartition(elem._1)。 根据计算出来的bucketid找到对应的writer,然后真正写入。
在HashShuffleWriter.write中使用到的shuffle由ShuffleBlockManager的forMapTask函数生成,注意forMapTask中产生writers的代码逻辑。
每个writer分配一下文件, 文件名由三元组(shuffle_id,map_id,reduce_id)组成,如果知道了这个三元组就可以找到对应的文件。
如果consolidation没有打开,那么在一个task中,有多少个输出的partition就会有多少个中间文件。
val writers: Array = if (consolidateShuffleFiles) {
fileGroup = getUnusedFileGroup()
Array.tabulate(numBuckets) { bucketId =>
val blockId = ShuffleBlockId(shuffleId, mapId, bucketId)
blockManager.getDiskWriter(blockId, fileGroup(bucketId), serializer, bufferSize)
}
} else {
Array.tabulate(numBuckets) { bucketId =>
val blockId = ShuffleBlockId(shuffleId, mapId, bucketId)
val blockFile = blockManager.diskBlockManager.getFile(blockId)
// Because of previous failures, the shuffle file may already exist on this machine.
// If so, remove it.
if (blockFile.exists) {
if (blockFile.delete()) {
logInfo(s"Removed existing shuffle file $blockFile")
} else {
logWarning(s"Failed to remove existing shuffle file $blockFile")
}
}
blockManager.getDiskWriter(blockId, blockFile, serializer, bufferSize)
}
}
getFile负责将三元组(shuffle_id,map_id,reduce_id)映射到文件名
def getFile(filename: String): File = {
// Figure out which local directory it hashes to, and which subdirectory in that
val hash = Utils.nonNegativeHash(filename)
val dirId = hash % localDirs.length
val subDirId = (hash / localDirs.length) % subDirsPerLocalDir
// Create the subdirectory if it doesn't already exist
var subDir = subDirs(dirId)(subDirId)
if (subDir == null) {
subDir = subDirs(dirId).synchronized {
val old = subDirs(dirId)(subDirId)
if (old != null) {
old
} else {
val newDir = new File(localDirs(dirId), "%02x".format(subDirId))
newDir.mkdir()
subDirs(dirId)(subDirId) = newDir
newDir
}
}
}
new File(subDir, filename)
}
def getFile(blockId: BlockId): File = getFile(blockId.name)
产生的文件在哪呢,如果没有更改默认的配置,生成的目录结构类似于下
/tmp/spark-local-20140723092540-7f24
/tmp/spark-local-20140723092540-7f24/0d
/tmp/spark-local-20140723092540-7f24/0d/shuffle_0_0_1
/tmp/spark-local-20140723092540-7f24/0d/shuffle_0_1_0
/tmp/spark-local-20140723092540-7f24/0c
/tmp/spark-local-20140723092540-7f24/0c/shuffle_0_0_0
/tmp/spark-local-20140723092540-7f24/0e
/tmp/spark-local-20140723092540-7f24/0e/shuffle_0_1_1
当所有的数据写入文件并提交以后,还需要生成MapStatus汇报给driver application. MapStatus在哪生成的呢?commitWritesAndBuildStatus就干这活。
调用关系HashShuffleWriter.stop->commitWritesAndBuildStatus
private def commitWritesAndBuildStatus(): MapStatus = {
// Commit the writes. Get the size of each bucket block (total block size).
var totalBytes = 0L
var totalTime = 0L
val compressedSizes = shuffle.writers.map { writer: BlockObjectWriter =>
writer.commit()
writer.close()
val size = writer.fileSegment().length
totalBytes += size
totalTime += writer.timeWriting()
MapOutputTracker.compressSize(size)
}
// Update shuffle metrics.
val shuffleMetrics = new ShuffleWriteMetrics
shuffleMetrics.shuffleBytesWritten = totalBytes
shuffleMetrics.shuffleWriteTime = totalTime
metrics.shuffleWriteMetrics = Some(shuffleMetrics)
new MapStatus(blockManager.blockManagerId, compressedSizes)
}
compressedSize是一个非常让人疑惑的地方,原因慢慢道来,先看一下MapStatus的构造函数
class MapStatus(var location: BlockManagerId, var compressedSizes: Array)
compressedSize是一个byte数组,每一个byte反应了该partiton中的数据大小。如Array(0)=128就表示在data partition 0中有128byte数据。问题的问题是一个byte只能表示255,如果超过255怎么办呢?
当当当,数学闪亮登场了,注意到compressSize没,通过转换将2^8变换为1.1^256。一下子由255byte延伸到近35G.看一看这神奇的compressSize函数吧,只是聊聊几行代码而已。
def compressSize(size: Long): Byte = {
if (size == 0) {
0
} else if (size <= 1L) {
1
} else {
math.min(255, math.ceil(math.log(size) / math.log(LOG_BASE)).toInt).toByte
}
}
ShuffleMapTask运行结束时,会将MapStatus结果封装在StatusUpdate消息中汇报给SchedulerBackend, 由DAGScheduler在handleTaskCompletion函数中将MapStatus加入到相应的Stage。这一过程略过,不再详述。MapOutputTrackerMaster会保存所有最新的MapStatus.只画张图来表示存储之后的示意。
数据读取过程ShuffledRDD.compute函数是读取过程的触发点。
override def compute(split: Partition, context: TaskContext): Iterator = {
val dep = dependencies.head.asInstanceOf]
SparkEnv.get.shuffleManager.getReader(dep.shuffleHandle, split.index, split.index + 1, context)
.read()
.asInstanceOf]
}
shuffleManager.getReader返回的是HashShuffleReader,所以看一看HashShuffleReader中的read函数的具体实现。
read函数处理逻辑中需要注意到一点即combine过程有可能会被再次执行。注意dep.aggregator.isDefined这一分支判断。ReduceByKey(_ + _)中的(_ + _)在此处被执行。
override def read(): Iterator] = {
val iter = BlockStoreShuffleFetcher.fetch(handle.shuffleId, startPartition, context,
Serializer.getSerializer(dep.serializer))
if (dep.aggregator.isDefined) {
if (dep.mapSideCombine) {
new InterruptibleIterator(context, dep.aggregator.get.combineCombinersByKey(iter, context))
} else {
new InterruptibleIterator(context, dep.aggregator.get.combineValuesByKey(iter, context))
}
} else if (dep.aggregator.isEmpty && dep.mapSideCombine) {
throw new IllegalStateException("Aggregator is empty for map-side combine")
} else {
iter
}
}
一路辗转,终于来到了读取过程中非常关键的所在BlockStoreShuffleFetcher。
BlockStoreShuffleFetcher需要回答如下问题
[*]所要获取的mapid的mapstatus的内容是什么
[*]根据获得的mapstatus去相应的blockmanager获取具体的数据
val blockManager = SparkEnv.get.blockManager
一个ShuffleMapTask会生成一个MapStatus,MapStatus中含有当前ShuffleMapTask产生的数据落到各个Partition中的大小。如果大小为0,则表示该分区没有数据产生。MapStatus中另一个重要的成员变量就是BlockManagerId,该变量表示目标数据在哪个BlockManager当中。
MapoutputTrackerMaster拥有最新的MapStatus信息,为了执行效率,MapoutputTrackerWorker会定期更新数据到本地,所以MapoutputTracker先从本地查找,如果找不到再从MapoutputTrackerMaster上同步最新数据。
索引即是reduceId,如果array(0) == 0,就表示上一个ShuffleMapTask中生成的数据中没有任意的内容可以作为reduceId为0的ResultTask的输入。如果不能理解,返回仔细看一下MapStatus的结构图。
BlockManager.getMultiple用于读取BlockManager中的数据,根据配置确定生成tNettyBlockFetcherIterator还是BasicBlockFetcherIterator。
如果所要获取的文件落在本地,则调用getLocal读取,否则发送请求到远端blockmanager。看一下BlockFetcherIterator的initialize函数
override def initialize() {
// Split local and remote blocks.
val remoteRequests = splitLocalRemoteBlocks()
// Add the remote requests into our queue in a random order
fetchRequests ++= Utils.randomize(remoteRequests)
// Send out initial requests for blocks, up to our maxBytesInFlight
while (!fetchRequests.isEmpty &&
(bytesInFlight == 0 || bytesInFlight + fetchRequests.front.size <= maxBytesInFlight)) {
sendRequest(fetchRequests.dequeue())
}
val numFetches = remoteRequests.size - fetchRequests.size
logInfo("Started " + numFetches + " remote fetches in" + Utils.getUsedTimeMs(startTime))
// Get Local Blocks
startTime = System.currentTimeMillis
getLocalBlocks()
logDebug("Got local blocks in " + Utils.getUsedTimeMs(startTime) + " ms")
}
至此,数据读取的正常流程讲述完毕。
数据读取异常如果数据读取中碰到异常怎么办?比如,
[*]已知(stage_2,task_0)产生的parition_0的数据在机器m1, 当前任务在m2执行,于是从m2向m1发起远程获取请求,如果m2中拥有目标数据的JVM进程异常退出,则相应的目标数据无法获取。
如果无法获取目标数据,就会上报FetchFailedException.
def unpackBlock(blockPair: (BlockId, Option])) : Iterator = {
val blockId = blockPair._1
val blockOption = blockPair._2
blockOption match {
case Some(block) => {
block.asInstanceOf]
}
case None => {
blockId match {
case ShuffleBlockId(shufId, mapId, _) =>
val address = statuses(mapId.toInt)._1
throw new FetchFailedException(address, shufId.toInt, mapId.toInt, reduceId)
case _ =>
throw new SparkException(
"Failed to get block " + blockId + ", which is not a shuffle block")
}
}
}
}
FetchFailedExecption会被包装在StatutsUpdate上报给SchedulerBackend,然后一路处
相关内容
Apache Spark源码走读之1 -- Spark论文阅读笔记
Apache Spark源码走读之2 -- Job的提交与运行
Apache Spark源码走读之3-- Task运行期之函数调用关系分析
Apache Spark源码走读之4 -- DStream实时流数据处理
Apache Spark源码走读之5-- DStream处理的容错性分析
Apache Spark源码走读之6-- 存储子系统分析
Apache Spark源码走读之7 -- Standalone部署方式分析
Apache Spark源码走读之8 -- Spark on Yarn
Apache Spark源码走读之9 -- Spark源码编译
Apache Spark源码走读之10 -- 在YARN上运行SparkPi
Apache Spark源码走读之11 -- sql的解析与执行
Apache Spark源码走读之12 -- Hive on Spark运行环境搭建
Apache Spark源码走读之13 -- hiveql on spark实现详解
Apache Spark源码走读之14 -- Graphx实现剖析
Apache Spark源码走读之15 -- Standalone部署模式下的容错性分析
Apache Spark源码走读之16 -- spark repl实现详解
Apache Spark源码走读之17 -- 如何进行代码跟读
Apache Spark源码走读之18 -- 使用Intellij idea调试Spark源码
Apache Spark源码走读之19 -- standalone cluster模式下资源的申请与释放
Apache Spark源码走读之21 -- WEB UI和Metrics初始化及数据更新过程分析
Apache Spark源码走读之22 -- 浅谈mllib中线性回归的算法实现
Apache Spark源码走读之23 -- Spark MLLib中拟牛顿法L-BFGS的源码实现
Apache Spark源码走读之24 -- Sort-based Shuffle的设计与实现
学习了,谢谢分享~
页:
[1]