eying 发表于 2016-2-3 20:02:45

Spark SQL+Hive历险记

问题导读:



1.Spark SQL接口是什么?
2.sbt的依赖有哪些?
3.Spark SQL + Hive + Hbase方式集成 操作是什么?






static/image/hrline/4.gif


基础依赖环境 Apache Hadoop2.7.1

Apache Spark1.6.0
Apache Hive1.2.1
Apache Hbase0.98.12

(1)提前安装好scala的版本,我这里是2.11.7

(2)下载spark-1.6.0源码,解压进入根目录编译

(3)dev/change-scala-version.sh 2.11
修改pom文件,修改对应的hadoop,hbase,hive的版本

执行编译支持hive功能的spark
(4)mvn -Pyarn -Phive-Phive-thriftserver -Phadoop-2.7.1 -Dscala-2.11 -DskipTests clean package


三种测试方式:

bin/spark-submit--class org.apache.spark.examples.SparkPi --master spark://h1:7077 examples/target/spark-examples_2.11-1.6.0.jar100
   
bin/spark-submit--class org.apache.spark.examples.SparkPi --master yarn-cluster examples/target/spark-examples_2.11-1.6.0.jar10

bin/spark-submit--class org.apache.spark.examples.SparkPi --master yarn-clientexamples/target/spark-examples_2.11-1.6.0.jar10


(一):命令行Spark SQL接口调试

编译成功后,将提前安装好的hive/conf/hive-site.xml拷贝到spark的conf/目录下, 执行,spark-sql的启动命令,同时使用--jars 标签把mysql驱动包,hadoop支持的压缩包,以及通过hive读取hbase相关的jar包加入进来,启动
bin/spark-sql --jars
lib/mysql-connector-java-5.1.31.jar,
lib/hadoop-lzo-0.4.20-SNAPSHOT.jar,
/ROOT/server/hive/lib/hive-hbase-handler-1.2.1.jar,
/ROOT/server/hbase/lib/hbase-client-0.98.12-hadoop2.jar,
/ROOT/server/hbase/lib/hbase-common-0.98.12-hadoop2.jar,
/ROOT/server/hbase/lib/hbase-server-0.98.12-hadoop2.jar,
/ROOT/server/hbase/lib/hbase-hadoop2-compat-0.98.12-hadoop2.jar,
/ROOT/server/hbase/lib/guava-12.0.1.jar,
/ROOT/server/hbase/lib/hbase-protocol-0.98.12-hadoop2.jar,
/ROOT/server/hbase/lib/htrace-core-2.04.jar   



(二):Intellj IDEA15.0里面代码调试:

sbt的依赖:

//下面不需要使用的依赖,大家可根据情况去舍
name := "scala-spark"

version := "1.0"

scalaVersion := "2.11.7"

//使用公司的私服,去掉此行则使用默认私服
resolvers += "Local Maven Repository" at "http://xxxx:8080/nexus/content/groups/public/"

//使用内部仓储
externalResolvers := Resolver.withDefaultResolvers(resolvers.value, mavenCentral = false)

//Hadoop的依赖
libraryDependencies += "org.apache.hadoop" % "hadoop-client" % "2.7.1" //% "provided"

//Habse的依赖
libraryDependencies += "org.apache.hbase" % "hbase-client" % "0.98.12-hadoop2" // % "provided"

libraryDependencies += "org.apache.hbase" % "hbase-common" % "0.98.12-hadoop2"//% "provided"

libraryDependencies += "org.apache.hbase" % "hbase-server" % "0.98.12-hadoop2" //% "provided"

//Spark的依赖
libraryDependencies += "org.apache.spark" % "spark-core_2.11" % "1.6.0" //% "provided"

//Spark SQL 依赖
libraryDependencies += "org.apache.spark" % "spark-sql_2.11" % "1.6.0" //% "provided"

//Spark For Hive 依赖
libraryDependencies += "org.apache.spark" % "spark-hive_2.11" % "1.6.0"

//java servlet 依赖
libraryDependencies += "javax.servlet" % "javax.servlet-api" % "3.0.1" //% "provided"




scala主体代码
def main(args: Array) {
//设置用户名
System.setProperty("user.name", "username");
System.setProperty("HADOOP_USER_NAME", "username");
//此处不需要设置master,方便到集群上,能测试yarn-client , yarn-cluster,spark 各种模式
val sc=new SparkConf().setAppName("spark sql hive");
val sct=new SparkContext(sc);
//得到hive上下文
val hive = new org.apache.spark.sql.hive.HiveContext(sct);
//执行sql,并打印输入信息
hive.sql("show tables ").collect().foreach(println);
//关闭资源
sct.stop();
}




写好代码,在win上运行,有bug,/tmp/hive没有执行权限https://issues.apache.org/jira/browse/SPARK-10528
所以建议还是拿到linux上执行,而且win上只能调standalone模式,不能调yarn-cluster和yarn-client模式。

记住一个血的bug,在代码里的SparkConf()一定不要setMaster("")的值,否则你粗心了,在集群上执行各种模式时候会
出现莫名其妙的bug
//写代码方式,查询

//yarn集群模式
bin/spark-submit
--class com.tools.hive.SparkHive   
--master yarn-cluster --files conf/hive-site.xml   
--jars lib/datanucleus-api-jdo-3.2.6.jar,
lib/datanucleus-rdbms-3.2.9.jar,
lib/datanucleus-core-3.2.10.jar,
lib/mysql-connector-java-5.1.31.jar   
scala-spark_2.11-1.0.jar //这是主体的jar,不用跟--jars放在一起,否则会有问题

//yarn客户端模式
bin/spark-submit   
--class com.tools.hive.SparkHive      
--master yarn-client   
--files conf/hive-site.xml   
--jars lib/datanucleus-api-jdo-3.2.6.jar,
lib/datanucleus-rdbms-3.2.9.jar,
lib/datanucleus-core-3.2.10.jar,
lib/mysql-connector-java-5.1.31.jar   
scala-spark_2.11-1.0.jar //这是主体的jar,不用跟--jars放在一起,否则会有问题


//spark alone模式
bin/spark-submit   
--class com.tools.hive.SparkHive   
--master spark://h1:7077
--files conf/hive-site.xml   
--jars lib/datanucleus-api-jdo-3.2.6.jar,
lib/datanucleus-rdbms-3.2.9.jar,
lib/datanucleus-core-3.2.10.jar,
lib/mysql-connector-java-5.1.31.jar   
scala-spark_2.11-1.0.jar //这是主体的jar,不用跟--jars放在一起,否则会有问题




以Spark SQL 方式查询,不一定非得让你写代码,这就是sql的魅力,spark sql也能使用sql通过hive的元数据,查询hdfs数据或者hbase表等

//yarn-cluster集群模式不支持spark sql
Error: Cluster deploy mode is not applicable to Spark SQL shell.


//yarn客户端模式
bin/spark-sql      
--master yarn-client   
--files conf/hive-site.xml   
--jars lib/datanucleus-api-jdo-3.2.6.jar,
lib/datanucleus-rdbms-3.2.9.jar,
lib/datanucleus-core-3.2.10.jar,
lib/mysql-connector-java-5.1.31.jar   
-e "select name ,count(1) as c from info group by name order by c desc ;"

//spark alone模式
bin/spark-sql      
--master spark://h1:7077   
--files conf/hive-site.xml   
--jars lib/datanucleus-api-jdo-3.2.6.jar,
lib/datanucleus-rdbms-3.2.9.jar,
lib/datanucleus-core-3.2.10.jar,
lib/mysql-connector-java-5.1.31.jar   
-e "select name ,count(1) as c from info group by name order by c desc ;"




Spark SQL + Hive + Hbase方式集成

//yarn客户端模式
bin/spark-sql    --master yarn-client --files conf/hive-site.xml--jars lib/
datanucleus-api-jdo-3.2.6.jar,
lib/datanucleus-rdbms-3.2.9.jar,
lib/datanucleus-core-3.2.10.jar,
lib/mysql-connector-java-5.1.31.jar,
lib/hadoop-lzo-0.4.20-SNAPSHOT.jar,
/ROOT/server/hive/lib/hive-hbase-handler-1.2.1.jar,
/ROOT/server/hbase/lib/hbase-client-0.98.12-hadoop2.jar,
/ROOT/server/hbase/lib/hbase-common-0.98.12-hadoop2.jar,
/ROOT/server/hbase/lib/hbase-server-0.98.12-hadoop2.jar,
/ROOT/server/hbase/lib/hbase-hadoop2-compat-0.98.12-hadoop2.jar,
/ROOT/server/hbase/lib/guava-12.0.1.jar,
/ROOT/server/hbase/lib/hbase-protocol-0.98.12-hadoop2.jar,
/ROOT/server/hbase/lib/htrace-core-2.04.jar      
-e "select * from dong limit 2 ;"



//spark alone模式
bin/spark-sql    --master spark://h1:7077 --files conf/hive-site.xml--jars lib/
datanucleus-api-jdo-3.2.6.jar,
lib/datanucleus-rdbms-3.2.9.jar,
lib/datanucleus-core-3.2.10.jar,
lib/mysql-connector-java-5.1.31.jar,
lib/hadoop-lzo-0.4.20-SNAPSHOT.jar,
/ROOT/server/hive/lib/hive-hbase-handler-1.2.1.jar,
/ROOT/server/hbase/lib/hbase-client-0.98.12-hadoop2.jar,
/ROOT/server/hbase/lib/hbase-common-0.98.12-hadoop2.jar,
/ROOT/server/hbase/lib/hbase-server-0.98.12-hadoop2.jar,
/ROOT/server/hbase/lib/hbase-hadoop2-compat-0.98.12-hadoop2.jar,
/ROOT/server/hbase/lib/guava-12.0.1.jar,
/ROOT/server/hbase/lib/hbase-protocol-0.98.12-hadoop2.jar,
/ROOT/server/hbase/lib/htrace-core-2.04.jar   
-e "select count(*) from dong;"







总结:

使用某个spark命令提交任务时,如果对参数比较模糊,可以使用
bin/spark-xxx-h命令查看,参数介绍

另外spark 整合 hive关联hbase的时候或者spark整合hive 的时候,会出现很多问题,最常见的就是 :
(1)mysql驱动包找不到
(2)datanucleus相关的类找不到
(3)运行成功,而没有结果
(4).....

Spark SQL整合Hive时,一定要把相关的jar包和hive-site.xml文件,提交到 集群上,否则会出现各种莫名其妙的小问题,
经过在网上查资料,大多数的解决办法在Spark的spark-env.sh里面设置类路径,经测试没有生效,所以,还是通过--jars 这个参数来提交依赖的jar包比较靠谱。



参考链接:

winuitls.exe下载地址,如果再win上想远程连接spark alone集群提交任务,可能要用到:
http://teknosrc.com/spark-error-java-io-ioexception-could-not-locate-executable-null-bin-winutils-exe-hadoop-binaries/
http://zengzhaozheng.blog.51cto.com/8219051/1597902


页: [1]
查看完整版本: Spark SQL+Hive历险记