PeersLee 发表于 2016-6-29 23:14:50

深度学习与自然语言处理(4)_斯坦福cs224d 大作业测验1与解答

本帖最后由 PeersLee 于 2016-6-29 23:48 编辑

问题导读:

1.什么是Softmax ?
2.神经网络怎样学习?
3.什么是word2vec?
4.如何进行情感分析?

static/image/hrline/3.gif


解决方案:

上一篇:
深度学习与自然语言处理(3)_斯坦福cs224d Lecture 3
http://www.aboutyun.com/thread-19018-1-1.html
(出处: about云开发)


1 Softmax (10 分)

(part a) (5分)
证明针对任何输入向量x和常数c,softmax函数的输出不会随着输入向量偏移(也就是常数c)而改变。即:


softmax(x)=softmax(x+c)
其中x+c就是给x每一个元素加上常数c。注意:



提示:在实际应用中,经常会用到这个性质。为了稳定地计算softmax概率,我们会选择c=−maxixi。(即将x的每个元素减去最大的那个元素)。

博主:熬过了高中,居然又看见证明了,也是惊(ri)喜(le)万(gou)分(le),答案拿来!!!
解答:

证明,针对所有维度1≤i≤dim(x):



(part b) (5 分)
已知一个N行d列的输入矩阵,计算每一行的softmax概率。在q1_softmax.py中写出你的实现过程,并使用python q1_softmax.py执行。

要求:你所写的代码应该尽可能的有效并以向量化的形式来实现。非向量化的实现将不会得到满分。

博主:简直要哭晕在厕所了,当年毕业设计也是加论文一星期都可以写完的节奏,这里一个5分的作业,还这么多要求…社会主义好…答案拿来!!!


import numpy as np

def softmax(x):
    """
      Softmax 函数
    """
    assert len(x.shape) > 1, "Softmax的得分向量要求维度高于1"
    x -= np.max(x, axis=1, keepdims=True)
    x = np.exp(x) / np.sum(np.exp(x), axis=1, keepdims=True)

    return x


2 神经网络基础(30分)

(part a) (3 分)
推导sigmoid函数的导数,并且只以sigmoid函数值的形式写出来(导数的表达式里只包含σ(x),不包含x)。证明针对这个问题没必要单独考虑x。方便回忆:下面给出sigmoid函数形式:



旁白:我年纪轻轻干嘛要走上深度学习这条不归路,真是生无所恋了。
答案:σ'(x)=σ(x)(1−σ(x))。

(part b) (3 分)
当使用交叉熵损失来作为评价标准时,推导出损失函数以softmax为预测结果的输入向量θ的梯度。注意,



其中y是一个one-hot向量,y^是所有类别的预测出的概率向量。(提示:你需要考虑y的许多元素为0,并且假设y仅有第k个类别是1)

答案:
或者等价于下面表达式,其中假设k是正确的类别



(part c) (6 分)
推导出单隐层神经网络关于输入x的梯度(也就是推导出∂J∂x,其中J是神经网络的损失函数)。这个神经网络在隐层和输出层采用了sigmoid激活函数,y是one-hot编码向量,使用了交叉熵损失。(使用σ'(x) 作为sigmoid梯度,并且你可以任意为推导过中的中间变量命名)




前向传播方程如下:

在编程问题中,我们假设输入向量(隐层变量和输出概率)始终是一个行向量。此处我们约定,当我们说要对向量使用sigmoid函数时,也就是说要对向量每一个元素使用sigmoid函数。Wi和bi(其中i=1,2)分别是两层的权重和偏移。旁白:好好的100分总分,硬要被你这么5分6分地拆,人家5分6分是一道选择题,你特么是一整个毕业设计!!好吧,不哭,跪着也要把题目做完,代码写完。哎,博主还是太年轻,要多学习啊。
(part d) (2 分)
上面所说的这个神经网络有多少个参数?我们可以假设输入是Dx维,输出是Dy,隐层单元有H个。旁白:还有part d!!!答案: (Dx+1)⋅H+(H+1)⋅Dy.(part e) (4 分) 在q2_sigmoid.py中补充写出sigmoid激活函数的和求它的梯度的对应代码。并使用python q2_sigmoid.py进行测试,同样的,测试用例有可能不太详尽,因此尽量检查下自己的代码。
旁白:如果博主没有阵亡,就在走向阵亡的路上…def sigmoid_grad(f):
    """
      计算Sigmoid的梯度
    """
    #好在我有numpy
    f = f * ( 1 - f )

    return f
(part f) (4 分) 为了方便debugging,我们需要写一个梯度检查器。在q2_gradcheck.py中补充出来,使用python q2_gradcheck.py测试自己的代码。
旁白:做到昏天黑地,睡一觉起来又是一条好汉…
def gradcheck_naive(f, x):
    """
      对一个函数f求梯度的梯度检验
      - f 输入x,然后输出loss和梯度的函数
      - x 就是输入咯
    """
    rndstate = random.getstate()
    random.setstate(rndstate)
    fx, grad = f(x)
    h = 1e-4

    # 遍历x的每一维
    it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
    while not it.finished:
      ix = it.multi_index

      old_val = x
      x = old_val - h
      random.setstate(rndstate)
      ( fxh1, _ ) = f(x)

      x = old_val + h
      random.setstate(rndstate)
      ( fxh2, _ ) = f(x)

      numgrad = (fxh2 - fxh1)/(2*h)
      x = old_val

      # 比对梯度
      reldiff = abs(numgrad - grad) / max(1, abs(numgrad), abs(grad))
      if reldiff > 1e-5:
            print "Gradient check failed."
            print "First gradient error found at index %s" % str(ix)
            print "Your gradient: %f \t Numerical gradient: %f" % (grad, numgrad)
            return

      it.iternext() # Step to next dimension

    print "Gradient check passed!"
(part g) (8 分) 现在,在q2 neural.py中,写出只有一个隐层且激活函数为sigmoid的神经网络前向和后向传播代码。使用python q2_neural.py测试自己的代码。
旁白:一入DL深似海…
def forward_backward_prop(data, labels, params, verbose = False):
    """
      2个隐层的神经网络的前向运算和反向传播
    """

    if len(data.shape) >= 2:
      (N, _) = data.shape

    ### 展开每一层神经网络的参数
    t = 0
    W1 = np.reshape(params*dimensions], (dimensions, dimensions))
    t += dimensions*dimensions
    b1 = np.reshape(params], (1, dimensions))
    t += dimensions
    W2 = np.reshape(params*dimensions], (dimensions, dimensions))
    t += dimensions*dimensions
    b2 = np.reshape(params], (1, dimensions))

    ### 前向运算

    # 第一个隐层做内积
    a1 = sigmoid(data.dot(W1) + b1)   
    # 第二个隐层做内积
    a2 = softmax(a1.dot(W2) + b2)

    cost = - np.sum(np.log(a2))/N

    ### 反向传播

    # Calculate analytic gradient for the cross entropy loss function
    grad_a2 = ( a2 - labels ) / N

    # Backpropagate through the second latent layer
    gradW2 = np.dot( a1.T, grad_a2 )
    gradb2 = np.sum( grad_a2, axis=0, keepdims=True )

    # Backpropagate through the first latent layer
    grad_a1 = np.dot( grad_a2, W2.T ) * sigmoid_grad(a1)

    gradW1 = np.dot( data.T, grad_a1 )
    gradb1 = np.sum( grad_a1, axis=0, keepdims=True )

    if verbose: # Verbose mode for logging information
      print "W1 shape: {}".format( str(W1.shape) )
      print "W1 gradient shape: {}".format( str(gradW1.shape) )
      print "b1 shape: {}".format( str(b1.shape) )
      print "b1 gradient shape: {}".format( str(gradb1.shape) )

    ### 梯度拼起来
    grad = np.concatenate((gradW1.flatten(), gradb1.flatten(), gradW2.flatten(), gradb2.flatten()))

    return cost, grad
3 word2vec(40分+5附加分)

(part a) (3分)
假设你得到一个关联到中心词c的预测词向量υc,并且这个词向量使用skip-gram方法生成,预测词使用的是softmax预测函数,它能够在word2vec模型中被找到。

式中,w代表第w个词,μw(w=1,…,W)是词库中全体词汇的输出词向量。假设为交叉熵损失函数,且词o是被预测的词汇(noe-hot/独热模型的标记向量中第o个元素为1),求解预测词向量 υc的所对应的梯度。
提示:问题2中的标记法将有助于此问题的解答。比如:设y^为各个词汇使用softmax函数预测得到的向量,y为期望词向量,而损失函数可以表示为:
Jsoftmax−CE(o,υc,U)=CE(y,y^)(5)

其中,U=[μ1,μ2,…,μW]是全体输出向量形成的矩阵,确保你已经规定好你的向量和矩阵的方向。旁边:是的,旁白我已经不知道写什么了,感谢党感谢祖国吧。解答:设y^为词汇softmax预测结果的列向量,y是同样形为列向量的独热标签,那么有:


(part b) (3分)
条件仍然如前一题所描述,求解输出词向量μw的梯度(包括μo在内)旁白:我还是安安静静在天朝搬砖吧解答:

(part c) (6分)
仍然延续(part a)和(part b),假设我们使用为预测的向量υc使用负采样损失的计算方式,并且设定期望输出词为o。假设获得了K个负样例(词),并且被记为1,…,K,分别作为这些样例的标签(o∉1,…,K)。那么,对于一个给定的词o,将其输出向量记作μo。这里,负采样损失函数如下:


其中,σ(⋅)为sigmoid激活函数。当你完成上述操作之后,尝试简要描述这个损失函数比softmax-CE损失函数计算更为有效的原因(你可以给出递增式的学习率,即,给出softmax-CE损失函数的计算时间除以负采样损失函数的计算时间的结果)。注释:由于我们打算计算目标函数的最小值而不是最大值,这里提到的损失函数与Mikolov等人最先在原版论文中描述的正好相反。旁白:突然想起来,小时候好焦虑,长大后到底去清华还是去北大,后来发现多虑了。我想如果当初走了狗屎运进了贵T大贵P大,也一定完不成学业。解答:
(part d) (8分)
试得到由skip-gram和CBOW算法分别算出的全部词向量的梯度,前提步骤和词内容集合都已给出,其中,m是窗口的大小。将词wordk的输入和输出词向量分别记为υk和μk。
提示:可以随意使用函数F(o,υc)(其中o代表词汇)作为这一部分中Jsoftmax−CE(o,υc,…)或Jneg−sample(o,υc,…)损失函数的占位符——你将在编程部分看到一个非常有用的抽象类,那意味着你的解决方法可以用这样的形式表达:∂F(o,υc)∂…
回忆skip-gram算法,以c为中心周边内容的损失值计算如下:

其中,wc+j代表距离中心词的第j个词。
CBOW略有不同,不同于使用υc作为预测向量,我们以υ^为底,在CBOW中(一个小小的变体),我们计算上下文输入词向量的和:

于是,CBOW的损失函数定义为:
JCBOW(wordc−m…c+m)=F(wc,υ^)(9)

注释:为了符合υ^在诸如代码部分中的各种表达规范,在skip-gram方法中,令:υ^=υc。旁白:我诚实一点,这个部分真的是翻了课件抄下来的。解答:为了表达得更为清晰,我们将词库中全部词汇的全部输出向量集合记作U,给定一个损失函数F,



(part e) (12分)
在这一部分,你将实现word2vec模型,并且使用随机梯度下降方法(SGD)训练属于你自己的词向量。首先,在代码q3_word2vec.py中编写一个辅助函数对矩阵中的每一行进行归一化。同样在这个文件中,完成对softmax、负采样损失函数以及梯度计算函数的实现。然后,完成面向skip-gram的梯度损失函数。当你完成这些的时候,使用命令:python q3_word2vec.py对编写的程序进行测试。
注释:如果你选择不去实现CBOW(h部分),只需简单地删除对NotImplementedError错误的捕获即可完成你的测试。旁白:前方高能预警,代码量爆炸了!

import numpy as np
import random

from q1_softmax import softmax
from q2_gradcheck import gradcheck_naive
from q2_sigmoid import sigmoid, sigmoid_grad

def normalizeRows(x):
    """
      行归一化函数
    """

    N = x.shape
    x /= np.sqrt(np.sum(x**2, axis=1)).reshape((N,1)) + 1e-30

    return x

def test_normalize_rows():
    print "Testing normalizeRows..."
    x = normalizeRows(np.array([,]))
    # 结果应该是 [, ]
    print x
    assert (np.amax(np.fabs(x - np.array([,]))) <= 1e-6)
    print ""

def softmaxCostAndGradient(predicted, target, outputVectors, dataset):
    """
      word2vec的Softmax损失函数
    """                                                   

    # 输入:                                                         
    # - predicted: 预测词向量的numpy数组
    # - target: 目标词的下标            
    # - outputVectors: 所有token的"output"向量(行形式)
    # - dataset: 用来做负例采样的,这里其实没用着         

    # 输出:                                                      
    # - cost: 输出的互熵损失   
    # - gradPred: the gradient with respect to the predicted word   
    #      vector                                                
    # - grad: the gradient with respect to all the other word      
    #      vectors                                             

    probabilities = softmax(predicted.dot(outputVectors.T))
    cost = -np.log(probabilities)
    delta = probabilities
    delta -= 1
    N = delta.shape
    D = predicted.shape
    grad = delta.reshape((N,1)) * predicted.reshape((1,D))
    gradPred = (delta.reshape((1,N)).dot(outputVectors)).flatten()

    return cost, gradPred, grad

def negSamplingCostAndGradient(predicted, target, outputVectors, dataset,
    K=10):
    """
      Word2vec模型负例采样后的损失函数和梯度
    """

    grad = np.zeros(outputVectors.shape)
    gradPred = np.zeros(predicted.shape)

    indices =
    for k in xrange(K):
      newidx = dataset.sampleTokenIdx()
      while newidx == target:
            newidx = dataset.sampleTokenIdx()
      indices +=

    labels = np.array( + [-1 for k in xrange(K)])
    vecs = outputVectors

    t = sigmoid(vecs.dot(predicted) * labels)
    cost = -np.sum(np.log(t))

    delta = labels * (t - 1)
    gradPred = delta.reshape((1,K+1)).dot(vecs).flatten()
    gradtemp = delta.reshape((K+1,1)).dot(predicted.reshape(
      (1,predicted.shape)))
    for k in xrange(K+1):
      grad] += gradtemp

   t = sigmoid(predicted.dot(outputVectors))
   cost = -np.log(t)
   delta = t - 1

   gradPred += delta * outputVectors
   grad += delta * predicted

   for k in xrange(K):
         idx = dataset.sampleTokenIdx()

         t = sigmoid(-predicted.dot(outputVectors))
         cost += -np.log(t)
         delta = 1 - t

         gradPred += delta * outputVectors
         grad += delta * predicted


    return cost, gradPred, grad


def skipgram(currentWord, C, contextWords, tokens, inputVectors, outputVectors,
    dataset, word2vecCostAndGradient = softmaxCostAndGradient):
    """ Skip-gram model in word2vec """

    # skip-gram模型的实现

    # 输入:                                                         
    # - currrentWord: 当前中心词所对应的串         
    # - C: 上下文大小(词窗大小)                        
    # - contextWords: 最多2*C个词                           
    # - tokens: 对应词向量中词下标的字典               
    # - inputVectors: "input" word vectors (as rows) for all tokens         
    # - outputVectors: "output" word vectors (as rows) for all tokens         
    # - word2vecCostAndGradient: the cost and gradient function for a prediction vector given the target word vectors, could be one of the two cost functions you implemented above

    # 输出:                                                   
    # - cost: skip-gram模型算得的损失值   
    # - grad: 词向量对应的梯度


    currentI = tokens
    predicted = inputVectors

    cost = 0.0
    gradIn = np.zeros(inputVectors.shape)
    gradOut = np.zeros(outputVectors.shape)
    for cwd in contextWords:
      idx = tokens
      cc, gp, gg = word2vecCostAndGradient(predicted, idx, outputVectors, dataset)
      cost += cc
      gradOut += gg
      gradIn += gp

    return cost, gradIn, gradOut


def word2vec_sgd_wrapper(word2vecModel, tokens, wordVectors, dataset, C, word2vecCostAndGradient = softmaxCostAndGradient):
    batchsize = 50
    cost = 0.0
    grad = np.zeros(wordVectors.shape)
    N = wordVectors.shape
    inputVectors = wordVectors[:N/2,:]
    outputVectors = wordVectors
    for i in xrange(batchsize):
      C1 = random.randint(1,C)
      centerword, context = dataset.getRandomContext(C1)

      if word2vecModel == skipgram:
            denom = 1
      else:
            denom = 1

      c, gin, gout = word2vecModel(centerword, C1, context, tokens, inputVectors, outputVectors, dataset, word2vecCostAndGradient)
      cost += c / batchsize / denom
      grad[:N/2, :] += gin / batchsize / denom
      grad += gout / batchsize / denom

    return cost, grad

def test_word2vec():
    # Interface to the dataset for negative sampling
    dataset = type('dummy', (), {})()
    def dummySampleTokenIdx():
      return random.randint(0, 4)

    def getRandomContext(C):
      tokens = ["a", "b", "c", "d", "e"]
      return tokens, \
         for i in xrange(2*C)]
    dataset.sampleTokenIdx = dummySampleTokenIdx
    dataset.getRandomContext = getRandomContext

    random.seed(31415)
    np.random.seed(9265)
    dummy_vectors = normalizeRows(np.random.randn(10,3))
    dummy_tokens = dict([("a",0), ("b",1), ("c",2),("d",3),("e",4)])
    print "==== Gradient check for skip-gram ===="
    gradcheck_naive(lambda vec: word2vec_sgd_wrapper(skipgram, dummy_tokens, vec, dataset, 5), dummy_vectors)
    gradcheck_naive(lambda vec: word2vec_sgd_wrapper(skipgram, dummy_tokens, vec, dataset, 5, negSamplingCostAndGradient), dummy_vectors)
    print "\n==== Gradient check for CBOW      ===="
    gradcheck_naive(lambda vec: word2vec_sgd_wrapper(cbow, dummy_tokens, vec, dataset, 5), dummy_vectors)
    gradcheck_naive(lambda vec: word2vec_sgd_wrapper(cbow, dummy_tokens, vec, dataset, 5, negSamplingCostAndGradient), dummy_vectors)

    print "\n=== Results ==="
    print skipgram("c", 3, ["a", "b", "e", "d", "b", "c"], dummy_tokens, dummy_vectors[:5,:], dummy_vectors, dataset)
    print skipgram("c", 1, ["a", "b"], dummy_tokens, dummy_vectors[:5,:], dummy_vectors, dataset, negSamplingCostAndGradient)
    print cbow("a", 2, ["a", "b", "c", "a"], dummy_tokens, dummy_vectors[:5,:], dummy_vectors, dataset)
    print cbow("a", 2, ["a", "b", "a", "c"], dummy_tokens, dummy_vectors[:5,:], dummy_vectors, dataset, negSamplingCostAndGradient)

if __name__ == "__main__":
    test_normalize_rows()
    test_word2vec()

(part f) (4分) 在代码q3_sgd.py中完成对随即梯度下降优化函数的实现。并且在该代码中运行测试你的实现。旁白:想到这篇文章有可能会被无数可以智商碾压我的大神看到,就脸一阵发烫。
# 实现随机梯度下降

# 随机梯度下降每1000轮,就保存一下现在训练得到的参数
SAVE_PARAMS_EVERY = 1000

import glob
import os.path as op
import cPickle as pickle
import sys

def load_saved_params():
    """
      载入之前的参数以免从头开始训练
    """
    st = 0
    for f in glob.glob("saved_params_*.npy"):
      iter = int(op.splitext(op.basename(f)).split("_"))
      if (iter > st):
            st = iter

    if st > 0:
      with open("saved_params_%d.npy" % st, "r") as f:
            params = pickle.load(f)
            state = pickle.load(f)
      return st, params, state
    else:
      return st, None, None

def save_params(iter, params):
    with open("saved_params_%d.npy" % iter, "w") as f:
      pickle.dump(params, f)
      pickle.dump(random.getstate(), f)

def sgd(f, x0, step, iterations, postprocessing = None, useSaved = False, PRINT_EVERY=10, ANNEAL_EVERY = 20000):
    """ 随机梯度下降 """
    ###########################################################
    # 输入
    #   - f: 需要最优化的函数
    #   - x0: SGD的初始值
    #   - step: SGD的步长
    #   - iterations: 总得迭代次数
    #   - postprocessing: 参数后处理(比如word2vec里需要对词向量做归一化处理)
    #   - PRINT_EVERY: 指明多少次迭代以后输出一下状态
    # 输出:
    #   - x: SGD完成后的输出参数                   #
    ###########################################################

    if useSaved:
      start_iter, oldx, state = load_saved_params()
      if start_iter > 0:
            x0 = oldx;
            step *= 0.5 ** (start_iter / ANNEAL_EVERY)

      if state:
            random.setstate(state)
    else:
      start_iter = 0

    x = x0

    if not postprocessing:
      postprocessing = lambda x: x

    expcost = None

    for iter in xrange(start_iter + 1, iterations + 1):
      cost, grad = f(x)
      x = x - step * grad
      x = postprocessing(x)

      if iter % PRINT_EVERY == 0:
            print "Iter#{}, cost={}".format(iter, cost)
            sys.stdout.flush()

      if iter % SAVE_PARAMS_EVERY == 0 and useSaved:
            save_params(iter, x)

      if iter % ANNEAL_EVERY == 0:
            step *= 0.5

    return x

(part g) (4分) 开始秀啦!现在我们将要载入真实的数据并使用你已经实现的手段训练词向量!我们将使用Stanford Sentiment Treebank (SST)数据集来进行词向量的训练,之后将他们应用到情感分析任务中去。在这一部分中,无需再编写更多的代码;只需要运行命令python q3 run.py即可。 注释:训练过程所占用的时间可能会很长,这取决于你所实现的程序的效率(一个拥有优异效率的实现程序大约需要占用1个小时)。努力去接近这个目标! 当脚本编写完成,需要完成对词向量的可视化显示。相应的结果同样被保存下来,如项目目录中的图片q3 word_vectors.png所示。包括在你作业中绘制的坐标图。简明解释最多三个句子在你的坐标图中的显示状况。 解答:

(part h) 附加题(5分)
在代码q3_word2vec.py中完成对CBOW的实现。注释:这部分内容是可选的,但是在d部分中关于CBOW的梯度推导在这里并不适用!
def cbow(currentWord, C, contextWords, tokens, inputVectors, outputVectors,
    dataset, word2vecCostAndGradient = softmaxCostAndGradient):
    """
      word2vec的CBOW模型
    """

    cost = 0
    gradIn = np.zeros(inputVectors.shape)
    gradOut = np.zeros(outputVectors.shape)


   D = inputVectors.shape
   predicted = np.zeros((D,))

   indices = for cwd in contextWords]
   for idx in indices:
         predicted += inputVectors

   cost, gp, gradOut = word2vecCostAndGradient(predicted, tokens, outputVectors, dataset)
   gradIn = np.zeros(inputVectors.shape)
   for idx in indices:
         gradIn += gp


    return cost, gradIn, gradOut
4 情感分析(20分)
现在,随着词向量的训练,我们准备展示一个简单的情感分析案例。随着词向量的训练,我们准备展示一个简单的情感分析。对于每条Stanford Sentiment Treebank数据集中的句子,将句子中全体词向量的平均值算作其特征值,并试图预测所提句子中的情感层次。短语的情感层次使用真实数值在原始数据集中表示,并被我们用以下5个类别来表示: “超级消极”,“比较消极”,“中立”,“积极”,“非常积极”对其分别进行从0到4的编码。在这一部分,你将学习用SGD来训练一个softmax回归机,并且通过不断地训练/调试验证来提高回归机的泛化能力。 (part a)(10分) 实现一个句子的特征生成器和softmax回归机。在代码q4_softmaxreg.py中完成对这个任务的实现,并运行命令python q4_ softmaxreg.py,对刚才完成的功能函数进行调试。


import numpy as np
import random

from cs224d.data_utils import *

from q1_softmax import softmax
from q2_gradcheck import gradcheck_naive
from q3_sgd import load_saved_params

def getSentenceFeature(tokens, wordVectors, sentence):
    """
      简单粗暴的处理方式,直接对句子的所有词向量求平均做为情感分析的输入
    """

    # 输入:                                                         
    # - tokens: a dictionary that maps words to their indices in the word vector list                              
    # - wordVectors: word vectors (each row) for all tokens
    # - sentence: a list of words in the sentence of interest

    # 输出:                                                         
    # - sentVector: feature vector for the sentence   

    sentVector = np.zeros((wordVectors.shape,))

    indices = for word in sentence]
    sentVector = np.mean(wordVectors, axis=0)

    return sentVector

def softmaxRegression(features, labels, weights, regularization = 0.0, nopredictions = False):
    """ Softmax Regression """
    # 完成加正则化的softmax回归      

    # 输入:                                                         
    # - features: feature vectors, each row is a feature vector
    # - labels: labels corresponding to the feature vectors   
    # - weights: weights of the regressor                     
    # - regularization: L2 regularization constant            

    # 输出:                                                         
    # - cost: cost of the regressor                           
    # - grad: gradient of the regressor cost with respect to its weights                                             
    # - pred: label predictions of the regressor (you might find np.argmax helpful)

    prob = softmax(features.dot(weights))
    if len(features.shape) > 1:
      N = features.shape
    else:
      N = 1
    # A vectorized implementation of    1/N * sum(cross_entropy(x_i, y_i)) + 1/2*|w|^2
    cost = np.sum(-np.log(prob)) / N
    cost += 0.5 * regularization * np.sum(weights ** 2)

    grad = np.array(prob)
    grad -= 1.0
    grad = features.T.dot(grad) / N
    grad += regularization * weights

    if N > 1:
      pred = np.argmax(prob, axis=1)
    else:
      pred = np.argmax(prob)

    if nopredictions:
      return cost, grad
    else:
      return cost, grad, pred

def accuracy(y, yhat):
    """ Precision for classifier """
    assert(y.shape == yhat.shape)
    return np.sum(y == yhat) * 100.0 / y.size

def softmax_wrapper(features, labels, weights, regularization = 0.0):
    cost, grad, _ = softmaxRegression(features, labels, weights,
      regularization)
    return cost, grad

def sanity_check():
    """
    Run python q4_softmaxreg.py.
    """
    random.seed(314159)
    np.random.seed(265)

    dataset = StanfordSentiment()
    tokens = dataset.tokens()
    nWords = len(tokens)

    _, wordVectors0, _ = load_saved_params()
    wordVectors = (wordVectors0[:nWords,:] + wordVectors0)
    dimVectors = wordVectors.shape

    dummy_weights = 0.1 * np.random.randn(dimVectors, 5)
    dummy_features = np.zeros((10, dimVectors))
    dummy_labels = np.zeros((10,), dtype=np.int32)   
    for i in xrange(10):
      words, dummy_labels = dataset.getRandomTrainSentence()
      dummy_features = getSentenceFeature(tokens, wordVectors, words)
    print "==== Gradient check for softmax regression ===="
    gradcheck_naive(lambda weights: softmaxRegression(dummy_features,
      dummy_labels, weights, 1.0, nopredictions = True), dummy_weights)

    print "\n=== Results ==="
    print softmaxRegression(dummy_features, dummy_labels, dummy_weights, 1.0)

if __name__ == "__main__":
    sanity_check()

(part b)(2分)
解释当分类语料少于三句时为什么要引入正则化(实际上在大多数机器学习任务都这样)。
解答:为了避免训练集的过拟合以及对未知数据集的适应力不佳现象。

(part c)(4分)
在q4 sentiment.py中完成超参数的实现代码从而获取“最佳”的惩罚因子。你是如何选择的?报告你的训练、调试和测试精度,在最多一个句子中校正你的超参数选定方法。 注释:在开发中应该获取至少30%的准确率。 解答:参考值为1e-4,在调试、开发和测试过程中准确率分别为29.1%,31.4%和27.6%


import numpy as np
import matplotlib.pyplot as plt

from cs224d.data_utils import *

from q3_sgd import load_saved_params, sgd
from q4_softmaxreg import softmaxRegression, getSentenceFeature, accuracy, softmax_wrapper

# 试试不同的正则化系数,选最好的
REGULARIZATION =

# 载入数据集
dataset = StanfordSentiment()
tokens = dataset.tokens()
nWords = len(tokens)

# 载入预训练好的词向量
_, wordVectors0, _ = load_saved_params()
wordVectors = (wordVectors0[:nWords,:] + wordVectors0)
dimVectors = wordVectors.shape

# 载入训练集
trainset = dataset.getTrainSentences()
nTrain = len(trainset)
trainFeatures = np.zeros((nTrain, dimVectors))
trainLabels = np.zeros((nTrain,), dtype=np.int32)
for i in xrange(nTrain):
    words, trainLabels = trainset
    trainFeatures = getSentenceFeature(tokens, wordVectors, words)

# 准备好训练集的特征
devset = dataset.getDevSentences()
nDev = len(devset)
devFeatures = np.zeros((nDev, dimVectors))
devLabels = np.zeros((nDev,), dtype=np.int32)
for i in xrange(nDev):
    words, devLabels = devset
    devFeatures = getSentenceFeature(tokens, wordVectors, words)

# 尝试不同的正则化系数
results = []
for regularization in REGULARIZATION:
    random.seed(3141)
    np.random.seed(59265)
    weights = np.random.randn(dimVectors, 5)
    print "Training for reg=%f" % regularization

    # batch optimization
    weights = sgd(lambda weights: softmax_wrapper(trainFeatures, trainLabels,
      weights, regularization), weights, 3.0, 10000, PRINT_EVERY=100)

    # 训练集上测效果
    _, _, pred = softmaxRegression(trainFeatures, trainLabels, weights)
    trainAccuracy = accuracy(trainLabels, pred)
    print "Train accuracy (%%): %f" % trainAccuracy

    # dev集合上看效果
    _, _, pred = softmaxRegression(devFeatures, devLabels, weights)
    devAccuracy = accuracy(devLabels, pred)
    print "Dev accuracy (%%): %f" % devAccuracy

    # 保存结果权重
    results.append({
      "reg" : regularization,
      "weights" : weights,
      "train" : trainAccuracy,
      "dev" : devAccuracy})

# 输出准确率
print ""
print "=== Recap ==="
print "Reg\t\tTrain\t\tDev"
for result in results:
    print "%E\t%f\t%f" % (
      result["reg"],
      result["train"],
      result["dev"])
print ""

# 选最好的正则化系数
BEST_REGULARIZATION = None
BEST_WEIGHTS = None

best_dev = 0
for result in results:
    if result["dev"] > best_dev:
      best_dev = result["dev"]
      BEST_REGULARIZATION = result["reg"]
      BEST_WEIGHTS = result["weights"]

# Test your findings on the test set
testset = dataset.getTestSentences()
nTest = len(testset)
testFeatures = np.zeros((nTest, dimVectors))
testLabels = np.zeros((nTest,), dtype=np.int32)
for i in xrange(nTest):
    words, testLabels = testset
    testFeatures = getSentenceFeature(tokens, wordVectors, words)

_, _, pred = softmaxRegression(testFeatures, testLabels, BEST_WEIGHTS)
print "Best regularization value: %E" % BEST_REGULARIZATION
print "Test accuracy (%%): %f" % accuracy(testLabels, pred)

# 画出正则化和准确率的关系
plt.plot(REGULARIZATION, for x in results])
plt.plot(REGULARIZATION, for x in results])
plt.xscale('log')
plt.xlabel("regularization")
plt.ylabel("accuracy")
plt.legend(['train', 'dev'], loc='upper left')
plt.savefig("q4_reg_v_acc.png")
plt.show()

(d)(4分)绘出在训练和开发过程中的分类准确率,并在x轴使用对数刻度来对正则化值进行相关设置。这应该自动化的进行。包括在你作业中详细展示的坐标图q4_reg_acc.png。简明解释最多三个句子在此坐标图中的显示情况。
解答:
页: [1]
查看完整版本: 深度学习与自然语言处理(4)_斯坦福cs224d 大作业测验1与解答