spark分布式编程之全局变量专题【共享变量】
本帖最后由 pig2 于 2016-8-29 16:58 编辑问题导读
1.spark共享变量的作用是什么?
2.什么情况下使用共享变量?
3.如何在程序中使用共享变量?
4.广播变量源码包含哪些内容?
static/image/hrline/4.gif
spark编程中,我们经常会遇到使用全局变量,来累加或则使用全局变量。然而对于分布式编程这个却与传统编程有着很大的区别。不可能在程序中声明一个全局变量,在分布式编程中就可以直接使用。因为代码会分发到多台机器,导致我们认为的全局变量失效。那么spark,spark Streaming该如何实现全局变量。
一般情况下,当一个传递给Spark操作(例如map和reduce)的函数在远程节点上面运行时,Spark操作实际上操作的是这个函数所用变量的一个独立副本。这些变量被复制到每台机器上,并且这些变量在远程机器上 的所有更新都不会传递回驱动程序。通常跨任务的读写变量是低效的,但是,Spark还是为两种常见的使用模式提供了两种有限的共享变量:广播变量(broadcast variable)和累加器(accumulator)+
1.概念
1.1 广播变量:
广播可以将变量发送到闭包中,被闭包使用。但是,广播还有一个作用是同步较大数据。比如你有一个IP库,可能有几G,在map操作中,依赖这个ip库。那么,可以通过广播将这个ip库传到闭包中,被并行的任务应用。广播通过两个方面提高数据共享效率:
1,集群中每个节点(物理机器)只有一个副本,默认的闭包是每个任务一个副本;
2,广播传输是通过BT下载模式实现的,也就是P2P下载,在集群多的情况下,可以极大的提高数据传输速率。广播变量修改后,不会反馈到其他节点。
1.2 累加器:
累加器是仅仅被相关操作累加的变量,因此可以在并行中被有效地支持。它可以被用来实现计数器和总和。Spark原生地只支持数字类型的累加器,编程者可以添加新类型的支持。如果创建累加器时指定了名字,可以在Spark的UI界面看到。这有利于理解每个执行阶段的进程。(对于Python还不支持)
累加器通过对一个初始化了的变量v调用SparkContext.accumulator(v)来创建。在集群上运行的任务可以通过add或者”+=”方法在累加器上进行累加操作。但是,它们不能读取它的值。只有驱动程序能够读取它的值,通过累加器的value方法。
2.如何使用全局变量
2.1 Java版本:
package com.Streaming;
import org.apache.spark.Accumulator;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.broadcast.Broadcast;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.Time;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import scala.Tuple2;
import java.util.*;
/**
* 利用广播进行黑名单过滤!
*
* 无论是计数器还是广播!都不是想象的那么简单!
* 联合使用非常强大!!!绝对是高端应用!
*
* 如果 联合使用扩展的话,该怎么做!!!
*
* ?
*/
public class BroadcastAccumulator {
/**
* 肯定要创建一个广播List
*
* 在上下文中实例化!
*/
private static volatile Broadcast<List<String>> broadcastList = null;
/**
* 计数器!
* 在上下文中实例化!
*/
private static volatile Accumulator<Integer> accumulator = null;
public static void main(String[] args) {
SparkConf conf = new SparkConf().setMaster("local").
setAppName("WordCountOnlieBroadcast");
JavaStreamingContext jsc = new JavaStreamingContext(conf, Durations.seconds(5));
/**
* 没有action的话,广播并不会发出去!
*
* 使用broadcast广播黑名单到每个Executor中!
*/
broadcastList = jsc.sc().broadcast(Arrays.asList("Hadoop","Mahout","Hive"));
/**
* 全局计数器!用于统计在线过滤了多少个黑名单!
*/
accumulator = jsc.sparkContext().accumulator(0,"OnlineBlackListCounter");
JavaReceiverInputDStream<String> lines = jsc.socketTextStream("Master", 9999);
/**
* 这里省去flatmap因为名单是一个个的!
*/
JavaPairDStream<String, Integer> pairs = lines.mapToPair(new PairFunction<String, String, Integer>() {
@Override
public Tuple2<String, Integer> call(String word) {
return new Tuple2<String, Integer>(word, 1);
}
});
JavaPairDStream<String, Integer> wordsCount = pairs.reduceByKey(new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer v1, Integer v2) {
return v1 + v2;
}
});
/**
* Funtion里面 前几个参数是 入参。
* 后面的出参。
* 体现在call方法里面!
*
* 这里直接基于RDD进行操作了!
*/
wordsCount.foreach(new Function2<JavaPairRDD<String, Integer>, Time, Void>() {
@Override
public Void call(JavaPairRDD<String, Integer> rdd, Time time) throws Exception {
rdd.filter(new Function<Tuple2<String, Integer>, Boolean>() {
@Override
public Boolean call(Tuple2<String, Integer> wordPair) throws Exception {
if (broadcastList.value().contains(wordPair._1)) {
/**
* accumulator不应该仅仅用来计数。
* 可以同时写进数据库或者redis中!
*/
accumulator.add(wordPair._2);
return false;
}else {
return true;
}
};
/**
* 这里真的希望 广播和计数器执行的话。要进行一个action操作!
*/
}).collect();
System.out.println("广播器里面的值"+broadcastList.value());
System.out.println("计时器里面的值"+accumulator.value());
return null;
}
});
jsc.start();
jsc.awaitTermination();
jsc.close();
}
}
2.2 Scala版本
package com.Streaming
import java.util
import org.apache.spark.streaming.{Duration, StreamingContext}
import org.apache.spark.{Accumulable, Accumulator, SparkContext, SparkConf}
import org.apache.spark.broadcast.Broadcast
/**
* Created by lxh on 2016/6/30.
*/
object BroadcastAccumulatorStreaming {
/**
* 声明一个广播和累加器!
*/
private var broadcastList:Broadcast]= _
private var accumulator:Accumulator = _
def main(args: Array) {
val sparkConf = new SparkConf().setMaster("local").setAppName("broadcasttest")
val sc = new SparkContext(sparkConf)
/**
* duration是ms
*/
val ssc = new StreamingContext(sc,Duration(2000))
// broadcastList = ssc.sparkContext.broadcast(util.Arrays.asList("Hadoop","Spark"))
broadcastList = ssc.sparkContext.broadcast(List("Hadoop","Spark"))
accumulator= ssc.sparkContext.accumulator(0,"broadcasttest")
/**
* 获取数据!
*/
val lines = ssc.socketTextStream("localhost",9999)
/**
* 拿到数据后 怎么处理!
*
* 1.flatmap把行分割成词。
* 2.map把词变成tuple(word,1)
* 3.reducebykey累加value
* (4.sortBykey排名)
* 4.进行过滤。 value是否在累加器中。
* 5.打印显示。
*/
val words = lines.flatMap(line => line.split(" "))
val wordpair = words.map(word => (word,1))
wordpair.filter(record => {broadcastList.value.contains(record._1)})
val pair = wordpair.reduceByKey(_+_)
/**
*这步为什么要先foreachRDD?
*
* 因为这个pair 是PairDStream<String, Integer>
*
* 进行foreachRDD是为了?
*
*/
/* pair.foreachRDD(rdd => {
rdd.filter(record => {
if (broadcastList.value.contains(record._1)) {
accumulator.add(1)
return true
} else {
return false
}
})
})*/
val filtedpair = pair.filter(record => {
if (broadcastList.value.contains(record._1)) {
accumulator.add(record._2)
true
} else {
false
}
println("累加器的值"+accumulator.value)
// pair.filter(record => {broadcastList.value.contains(record._1)})
/* val keypair = pair.map(pair => (pair._2,pair._1))*/
/**
* 如果DStream自己没有某个算子操作。就通过转化transform!
*/
/* keypair.transform(rdd => {
rdd.sortByKey(false)//TODO
})*/
pair.print()
ssc.start()
ssc.awaitTermination()
}
}
补充:除了上面提到的两种外,还有一个闭包的概念,这里补充下
闭包 与广播变量对比
有两种方式将数据从driver节点发送到worker节点:通过 闭包 和通过 广播变量 。闭包是随着task的组装和分发自动进行的,而广播变量则是需要程序猿手动操作的,具体地可以通过如下方式操作广播变量(假设 sc 为 SparkContext 类型的对象, bc 为 Broadcast 类型的对象):
可通过 sc.broadcast(xxx) 创建广播变量。
可在各计算节点中(闭包代码中)通过 bc.value 来引用广播的数据。
bc.unpersist() 可将各executor中缓存的广播变量删除,后续再使用时数据将被重新发送。
bc.destroy() 可将广播变量的数据和元数据一同销毁,销毁之后就不能再使用了。
任务闭包包含了任务所需要的代码和数据,如果一个executor数量小于RDD partition的数量,那么每个executor就会得到多个同样的任务闭包,这通常是低效的。而广播变量则只会将数据发送到每个executor一次,并且可以在多个计算操作中共享该广播变量,而且广播变量使用了类似于p2p形式的非常高效的广播算法,大大提高了效率。另外,广播变量由spark存储管理模块进行管理,并以MEMORY_AND_DISK级别进行持久化存储。
什么时候用闭包自动分发数据?情况有几种:
数据比较小的时候。
数据已在driver程序中可用。典型用例是常量或者配置参数。
什么时候用广播变量分发数据?情况有几种:
数据比较大的时候(实际上,spark支持非常大的广播变量,甚至广播变量中的元素数超过java/scala中Array的最大长度限制(2G,约21.5亿)都是可以的)。
数据是某种分布式计算结果。典型用例是训练模型等中间计算结果。
当数据或者变量很小的时候,我们可以在Spark程序中直接使用它们,而无需使用广播变量。
对于大的广播变量,序列化优化可以大大提高网络传输效率,参见本文序列化优化部分。
3.广播变量(Broadcast)源码分析
本文基于Spark 1.0源码分析,主要探讨广播变量的初始化、创建、读取以及清除。
类关系
BroadcastManager类中包含一个BroadcastFactory对象的引用。大部分操作通过调用BroadcastFactory中的方法来实现。
BroadcastFactory是一个Trait,有两个直接子类TorrentBroadcastFactory、HttpBroadcastFactory。这两个子类实现了对HttpBroadcast、TorrentBroadcast的封装,而后面两个又同时集成了Broadcast抽象类。
BroadcastManager的初始化
SparkContext初始化时会创建SparkEnv对象env,这个过程中会调用BroadcastManager的构造方法返回一个对象作为env的成员变量存在:
val broadcastManager = new BroadcastManager(isDriver, conf, securityManager)
构造BroadcastManager对象时会调用initialize方法,主要根据配置初始化broadcastFactory成员变量,并调用其initialize方法。
val broadcastFactoryClass =
conf.get("spark.broadcast.factory", "org.apache.spark.broadcast.HttpBroadcastFactory")
broadcastFactory =
Class.forName(broadcastFactoryClass).newInstance.asInstanceOf
// Initialize appropriate BroadcastFactory and BroadcastObject
broadcastFactory.initialize(isDriver, conf, securityManager)
两个工厂类的initialize方法都是对其相应实体类的initialize方法的调用,下面分开两个类来看。
HttpBroadcast的initialize方法
def initialize(isDriver: Boolean, conf: SparkConf, securityMgr: SecurityManager) {
synchronized {
if (!initialized) {
bufferSize = conf.getInt("spark.buffer.size", 65536)
compress = conf.getBoolean("spark.broadcast.compress", true)
securityManager = securityMgr
if (isDriver) {
createServer(conf)
conf.set("spark.httpBroadcast.uri",serverUri)
}
serverUri = conf.get("spark.httpBroadcast.uri")
cleaner = new MetadataCleaner(MetadataCleanerType.HTTP_BROADCAST, cleanup, conf)
compressionCodec = CompressionCodec.createCodec(conf)
initialized = true
}
}
}
除了一些变量的初始化外,主要做两件事情,一是createServer(只有在Driver端会做),其次是创建一个MetadataCleaner对象。
createServer
private def createServer(conf: SparkConf) {
broadcastDir = Utils.createTempDir(Utils.getLocalDir(conf))
server = new HttpServer(broadcastDir, securityManager)
server.start()
serverUri = server.uri
logInfo("Broadcast server started at " + serverUri)
}
首先创建一个存放广播变量的目录,默认是
conf.get("spark.local.dir",System.getProperty("java.io.tmpdir")).split(',')(0)
然后初始化一个HttpServer对象并启动(封装了jetty),启动过程中包括加载资源文件,起端口和线程用来监控请求等。这部分的细节在org.apache.spark.HttpServer类中,此处不做展开。
创建MetadataCleaner对象
一个MetadataCleaner对象包装了一个定时计划Timer,每隔一段时间执行一个回调函数,此处传入的回调函数为cleanup:
private def cleanup(cleanupTime: Long) {
val iterator = files.internalMap.entrySet().iterator()
while(iterator.hasNext) {
val entry = iterator.next()
val (file, time) = (entry.getKey, entry.getValue)
if (time < cleanupTime) {
iterator.remove()
deleteBroadcastFile(file)
}
}
}
即清楚存在吵过一定时长的broadcast文件。在时长未设定(默认情况)时,不清除:
if (delaySeconds > 0) {
logDebug(
"Starting metadata cleaner for " + name + " with delay of " + delaySeconds + " seconds " +
"and period of " + periodSeconds + " secs")
timer.schedule(task, periodSeconds * 1000, periodSeconds * 1000)
}
TorrentBroadcast的initialize方法
def initialize(_isDriver: Boolean, conf: SparkConf) {
TorrentBroadcast.conf = conf // TODO: we might have to fix it in tests
synchronized {
if (!initialized) {
initialized = true
}
}
}
Torrent在此处没做什么,这也可以看出和Http的区别,Torrent的处理方式就是p2p,去中心化。而Http是中心化服务,需要启动服务来接受请求。
创建broadcast变量
调用SparkContext中的 def broadcast(value: T): Broadcast方法来初始化一个广播变量,实现如下:
def broadcast(value: T): Broadcast = {
val bc = env.broadcastManager.newBroadcast(value, isLocal)
cleaner.foreach(_.registerBroadcastForCleanup(bc))
bc
}
即调用broadcastManager的newBroadcast方法:
def newBroadcast(value_ : T, isLocal: Boolean) = {
broadcastFactory.newBroadcast(value_, isLocal, nextBroadcastId.getAndIncrement())
}
再调用工厂类的newBroadcast方法,此处返回的是一个Broadcast对象。
HttpBroadcastFactory的newBroadcast
def newBroadcast(value_ : T, isLocal: Boolean, id: Long) =
new HttpBroadcast(value_, isLocal, id)
即创建一个新的HttpBroadcast对象并返回。
构造对象时主要做两件事情:
HttpBroadcast.synchronized {
SparkEnv.get.blockManager.putSingle(
blockId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
}
if (!isLocal) {
HttpBroadcast.write(id, value_)
}
1.将变量id和值放入blockManager,但并不通知master
2.调用伴生对象的write方法
def write(id: Long, value: Any) {
val file = getFile(id)
val out: OutputStream = {
if (compress) {
compressionCodec.compressedOutputStream(new FileOutputStream(file))
} else {
new BufferedOutputStream(new FileOutputStream(file), bufferSize)
}
}
val ser = SparkEnv.get.serializer.newInstance()
val serOut = ser.serializeStream(out)
serOut.writeObject(value)
serOut.close()
files += file
}
write方法将对象值按照指定的压缩、序列化写入指定的文件。这个文件所在的目录即是HttpServer的资源目录,文件名和id的对应关系为:
case class BroadcastBlockId(broadcastId: Long, field: String = "") extends BlockId {
def name = "broadcast_" + broadcastId + (if (field == "") "" else "_" + field)
}
TorrentBroadcastFactory的newBroadcast方法
def newBroadcast(value_ : T, isLocal: Boolean, id: Long) =
new TorrentBroadcast(value_, isLocal, id)
同样是创建一个TorrentBroadcast对象,并返回。
TorrentBroadcast.synchronized {
SparkEnv.get.blockManager.putSingle(
broadcastId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
}
if (!isLocal) {
sendBroadcast()
}
做两件事情,第一步和Http一样,第二步:
def sendBroadcast() {
val tInfo = TorrentBroadcast.blockifyObject(value_)
totalBlocks = tInfo.totalBlocks
totalBytes = tInfo.totalBytes
hasBlocks = tInfo.totalBlocks
// Store meta-info
val metaId = BroadcastBlockId(id, "meta")
val metaInfo = TorrentInfo(null, totalBlocks, totalBytes)
TorrentBroadcast.synchronized {
SparkEnv.get.blockManager.putSingle(
metaId, metaInfo, StorageLevel.MEMORY_AND_DISK, tellMaster = true)
}
// Store individual pieces
for (i <- 0 until totalBlocks) {
val pieceId = BroadcastBlockId(id, "piece" + i)
TorrentBroadcast.synchronized {
SparkEnv.get.blockManager.putSingle(
pieceId, tInfo.arrayOfBlocks(i), StorageLevel.MEMORY_AND_DISK, tellMaster = true)
}
}
}
可以看出,先将元数据信息缓存到blockManager,再将块信息缓存过去。开头可以看到有一个分块动作,是调用伴生对象的blockifyObject方法:
def blockifyObject(obj: T): TorrentInfo
此方法将对象obj分块(默认块大小为4M),返回一个TorrentInfo对象,第一个参数为一个TorrentBlock对象(包含blockID和block字节数组)、块数量以及obj的字节流总长度。
元数据信息中的blockId为广播变量id+后缀,value为总块数和总字节数。
数据信息是分块缓存,每块的id为广播变量id加后缀及块变好,数据位一个TorrentBlock对象
读取广播变量的值
通过调用bc.value来取得广播变量的值,其主要实现在反序列化方法readObject中
HttpBroadcast的反序列化
HttpBroadcast.synchronized {
SparkEnv.get.blockManager.getSingle(blockId) match {
case Some(x) => value_ = x.asInstanceOf
case None => {
logInfo("Started reading broadcast variable " + id)
val start = System.nanoTime
value_ = HttpBroadcast.read(id)
/*
* We cache broadcast data in the BlockManager so that subsequent tasks using it
* do not need to re-fetch. This data is only used locally and no other node
* needs to fetch this block, so we don't notify the master.
*/
SparkEnv.get.blockManager.putSingle(
blockId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
val time = (System.nanoTime - start) / 1e9
logInfo("Reading broadcast variable " + id + " took " + time + " s")
}
}
}
首先查看blockManager中是否已有,如有则直接取值,否则调用伴生对象的read方法进行读取:
def read(id: Long): T = {
logDebug("broadcast read server: " +serverUri + " id: broadcast-" + id)
val url = serverUri + "/" + BroadcastBlockId(id).name
var uc: URLConnection = null
if (securityManager.isAuthenticationEnabled()) {
logDebug("broadcast security enabled")
val newuri = Utils.constructURIForAuthentication(new URI(url), securityManager)
uc = newuri.toURL.openConnection()
uc.setAllowUserInteraction(false)
} else {
logDebug("broadcast not using security")
uc = new URL(url).openConnection()
}
val in = {
uc.setReadTimeout(httpReadTimeout)
val inputStream = uc.getInputStream
if (compress) {
compressionCodec.compressedInputStream(inputStream)
} else {
new BufferedInputStream(inputStream, bufferSize)
}
}
val ser = SparkEnv.get.serializer.newInstance()
val serIn = ser.deserializeStream(in)
val obj = serIn.readObject()
serIn.close()
obj
}
使用serverUri和block id对应的文件名直接开启一个HttpConnection将中心服务器上相应的数据取过来,使用配置的压缩和序列化机制进行解压和反序列化。
这里可以看到,所有需要用到广播变量值的executor都需要去driver上pull广播变量的内容。
取到值后,缓存到blockManager中,以便下次使用。
TorrentBroadcast的反序列化
private def readObject(in: ObjectInputStream) {
in.defaultReadObject()
TorrentBroadcast.synchronized {
SparkEnv.get.blockManager.getSingle(broadcastId) match {
case Some(x) =>
value_ = x.asInstanceOf
case None =>
val start = System.nanoTime
logInfo("Started reading broadcast variable " + id)
// Initialize @transient variables that will receive garbage values from the master.
resetWorkerVariables()
if (receiveBroadcast()) {
value_ = TorrentBroadcast.unBlockifyObject(arrayOfBlocks, totalBytes, totalBlocks)
/* Store the merged copy in cache so that the next worker doesn't need to rebuild it.
* This creates a trade-off between memory usage and latency. Storing copy doubles
* the memory footprint; not storing doubles deserialization cost. Also,
* this does not need to be reported to BlockManagerMaster since other executors
* does not need to access this block (they only need to fetch the chunks,
* which are reported).
*/
SparkEnv.get.blockManager.putSingle(
broadcastId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
// Remove arrayOfBlocks from memory once value_ is on local cache
resetWorkerVariables()
} else {
logError("Reading broadcast variable " + id + " failed")
}
val time = (System.nanoTime - start) / 1e9
logInfo("Reading broadcast variable " + id + " took " + time + " s")
}
}
}
和Http一样,都是先查看blockManager中是否已经缓存,若没有,则调用receiveBroadcast方法:
def receiveBroadcast(): Boolean = {
// Receive meta-info about the size of broadcast data,
// the number of chunks it is divided into, etc.
val metaId = BroadcastBlockId(id, "meta")
var attemptId = 10
while (attemptId > 0 && totalBlocks == -1) {
TorrentBroadcast.synchronized {
SparkEnv.get.blockManager.getSingle(metaId) match {
case Some(x) =>
val tInfo = x.asInstanceOf
totalBlocks = tInfo.totalBlocks
totalBytes = tInfo.totalBytes
arrayOfBlocks = new Array(totalBlocks)
hasBlocks = 0
case None =>
Thread.sleep(500)
}
}
attemptId -= 1
}
if (totalBlocks == -1) {
return false
}
/*
* Fetch actual chunks of data. Note that all these chunks are stored in
* the BlockManager and reported to the master, so that other executors
* can find out and pull the chunks from this executor.
*/
val recvOrder = new Random().shuffle(Array.iterate(0, totalBlocks)(_ + 1).toList)
for (pid <- recvOrder) {
val pieceId = BroadcastBlockId(id, "piece" + pid)
TorrentBroadcast.synchronized {
SparkEnv.get.blockManager.getSingle(pieceId) match {
case Some(x) =>
arrayOfBlocks(pid) = x.asInstanceOf
hasBlocks += 1
SparkEnv.get.blockManager.putSingle(
pieceId, arrayOfBlocks(pid), StorageLevel.MEMORY_AND_DISK, tellMaster = true)
case None =>
throw new SparkException("Failed to get " + pieceId + " of " + broadcastId)
}
}
}
hasBlocks == totalBlocks
}
和写数据一样,同样是分成两个部分,首先取元数据信息,再根据元数据信息读取实际的block信息。注意这里都是从blockManager中读取的,这里贴出blockManager.getSingle的分析。
调用栈中最后到BlockManager.doGetRemote方法,中间有一条语句:
val locations = Random.shuffle(master.getLocations(blockId))
即将存有这个block的节点信息随机打乱,然后使用:
val data = BlockManagerWorker.syncGetBlock(
GetBlock(blockId), ConnectionManagerId(loc.host, loc.port))
来获取。
从这里可以看出,Torrent方法首先将广播变量数据分块,并存到BlockManager中;每个节点需要读取广播变量时,是分块读取,对每一块都读取其位置信息,然后随机选一个存有此块数据的节点进行get;每个节点读取后会将包含的快信息报告给BlockManagerMaster,这样本地节点也成为了这个广播网络中的一个peer。
与Http方式形成鲜明对比,这是一个去中心化的网络,只需要保持一个tracker即可,这就是p2p的思想。
广播变量的清除
广播变量被创建时,紧接着有这样一句代码:
cleaner.foreach(_.registerBroadcastForCleanup(bc))
cleaner是一个ContextCleaner对象,会将刚刚创建的广播变量注册到其中,调用栈为:
def registerBroadcastForCleanup(broadcast: Broadcast) {
registerForCleanup(broadcast, CleanBroadcast(broadcast.id))
}
private def registerForCleanup(objectForCleanup: AnyRef, task: CleanupTask) {
referenceBuffer += new CleanupTaskWeakReference(task, objectForCleanup, referenceQueue)
}
等出现广播变量被弱引用时(关于弱引用,可以参考:http://blog.csdn.net/lyfi01/article/details/6415726),则会执行
cleaner.foreach(_.start())
start方法中会调用keepCleaning方法,会遍历注册的清理任务(包括RDD、shuffle和broadcast),依次进行清理:
private def keepCleaning(): Unit = Utils.logUncaughtExceptions {
while (!stopped) {
try {
val reference = Option(referenceQueue.remove(ContextCleaner.REF_QUEUE_POLL_TIMEOUT))
.map(_.asInstanceOf)
reference.map(_.task).foreach { task =>
logDebug("Got cleaning task " + task)
referenceBuffer -= reference.get
task match {
case CleanRDD(rddId) =>
doCleanupRDD(rddId, blocking = blockOnCleanupTasks)
case CleanShuffle(shuffleId) =>
doCleanupShuffle(shuffleId, blocking = blockOnCleanupTasks)
case CleanBroadcast(broadcastId) =>
doCleanupBroadcast(broadcastId, blocking = blockOnCleanupTasks)
}
}
} catch {
case e: Exception => logError("Error in cleaning thread", e)
}
}
}
doCleanupBroadcast调用以下语句:
broadcastManager.unbroadcast(broadcastId, true, blocking)
然后是:
def unbroadcast(id: Long, removeFromDriver: Boolean, blocking: Boolean) {
broadcastFactory.unbroadcast(id, removeFromDriver, blocking)
}
每个工厂类调用其对应实体类的伴生对象的unbroadcast方法。
HttpBroadcast中的变量清除
def unpersist(id: Long, removeFromDriver: Boolean, blocking: Boolean) = synchronized {
SparkEnv.get.blockManager.master.removeBroadcast(id, removeFromDriver, blocking)
if (removeFromDriver) {
val file = getFile(id)
files.remove(file)
deleteBroadcastFile(file)
}
}
1是删除blockManager中的缓存,2是删除本地持久化的文件
TorrentBroadcast中的变量清除
def unpersist(id: Long, removeFromDriver: Boolean, blocking: Boolean) = synchronized {
SparkEnv.get.blockManager.master.removeBroadcast(id, removeFromDriver, blocking)
}
小结
Broadcast可以使用在executor端多次使用某个数据的场景(比如说字典),Http和Torrent两种方式对应传统的CS访问方式和P2P访问方式,当广播变量较大或者使用较频繁时,采用后者可以减少driver端的压力。
参考:
http://blog.csdn.net/asongoficeandfire/article/details/37584643
https://endymecy.gitbooks.io/spa ... ared-variables.html
谢谢了,资料不错,很好很好 谢谢了,资料不错,很好很好!!!! spark集群 怎么就能启用一个应用? 好东西,学习学习
页:
[1]