fc013 发表于 2018-6-16 19:45:31

TensorFlow 实战之利用5-4-9模型实现Keras

本帖最后由 fc013 于 2018-6-16 20:29 编辑



问题导读:1.5-4-9模型是什么?2.什么是五步法?3.为什么要用函数式编程?


http://www.aboutyun.com/static/image/hrline/line7.png


作为一个程序员,我们可以像学习编程一样学习深度学习模型开发。我们以 Keras 为例来说明。我们可以用 5 步 + 4 种基本元素 + 9 种基本层结构,这 5-4-9 模型来总结。
我们通过一张图来理解下它们之间的关系:

5步法:

[*]构造网络模型

[*]编译模型

[*]训练模型

[*]评估模型

[*]使用模型进行预测

4种基本元素:

[*]网络结构:由10种基本层结构和其他层结构组成

[*]激活函数:如relu, softmax。口诀: 最后输出用softmax,其余基本都用relu

[*]损失函数:categorical_crossentropy多分类对数损失binary_crossentropy对数损失mean_squared_error平均方差损失mean_absolute_error平均绝对值损失
[*]优化器:如SGD随机梯度下降, RMSProp, Adagrad, Adam, Adadelta等

9种基本层模型:

[*]3种主模型:
a.全连接层Dense
b.卷积层:如conv1d, conv2d
c.循环层:如lstm, gru
[*]3种辅助层:
a.Activation层
b.Dropout层
c.池化层
[*]3种异构网络互联层:
a.嵌入层:用于第一层,输入数据到其他网络的转换
b.Flatten层:用于卷积层到全连接层之间的过渡
c.Permute层:用于RNN与CNN之间的接口

五步法
五步法是用深度学习来解决问题的五个步骤:

[*]构造网络模型

[*]编译模型

[*]训练模型

[*]评估模型

[*]使用模型进行预测

在这五步之中,其实关键的步骤主要只有第一步,这一步确定了,后面的参数都可以根据它来设置。
1. 过程化方法构造网络模型
我们先学习最容易理解的,过程化方法构造网络模型的过程。
Keras中提供了Sequential容器来实现过程式构造。只要用Sequential的add方法把层结构加进来就可以了。10种基本层结构我们会在后面详细讲。
例:
from keras.models import Sequential
from keras.layers import Dense, Activation

model = Sequential()

model.add(Dense(units=64, input_dim=100))
model.add(Activation("relu"))
model.add(Dense(units=10))
model.add(Activation("softmax"))
对于什么样的问题构造什么样的层结构,我们会在后面的例子中介绍。
2. 编译模型

模型构造好之后,下一步就可以调用Sequential的compile方法来编译它。
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
编译时需要指定两个基本元素:loss是损失函数,optimizer是优化函数。
如果只想用最基本的功能,只要指定字符串的名字就可以了。如果想配置更多的参数,调用相应的类来生成对象。例:我们想为随机梯度下降配上Nesterov动量,就生成一个SGD的对象就好了:
from keras.optimizers import SGD
model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.01, momentum=0.9, nesterov=True))
lr是学习率,learning rate。
3. 训练模型

调用fit函数,将输出的值X,打好标签的值y,epochs训练轮数,batch_size批次大小设置一下就可以了:
model.fit(x_train, y_train, epochs=5, batch_size=32)
4. 评估模型

模型训练的好不好,训练数据不算数,需要用测试数据来评估一下:
loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)
5. 用模型来预测

一切训练的目的是在于预测:
classes = model.predict(x_test, batch_size=128)
4种基本元素
1. 网络结构
主要用后面的层结构来拼装。网络结构如何设计呢? 可以参考论文,比如这篇中不管是左边的19层的VGG-19,还是右边34层的resnet,只要按图去实现就好了。

2. 激活函数
[*]对于多分类的情况,最后一层是softmax。
[*]其它深度学习层中多用relu。
[*]二分类可以用sigmoid。
[*]另外浅层神经网络也可以用tanh。

3. 损失函数
[*]categorical_crossentropy:多分类对数损失
[*]binary_crossentropy:对数损失
[*]mean_squared_error:均方差
[*]mean_absolute_error:平均绝对值损失

对于多分类来说,主要用categorical_ crossentropy。
4. 优化器
[*]SGD:随机梯度下降
[*]Adagrad:Adaptive Gradient自适应梯度下降
[*]Adadelta:对于Adagrad的进一步改进
[*]RMSProp
[*]Adam

本文将着重介绍后两种教程。
深度学习中的函数式编程

前面介绍的各种基本层,除了可以add进Sequential容器串联之外,它们本身也是callable对象,被调用之后,返回的还是callable对象。所以可以将它们视为函数,通过调用的方式来进行串联。
来个官方例子:
from keras.layers import Input, Dense
from keras.models import Model

inputs = Input(shape=(784,))

x = Dense(64, activation='relu')(inputs)
x = Dense(64, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)

model = Model(inputs=inputs, outputs=predictions)
model.compile(optimizer='rmsprop',
            loss='categorical_crossentropy',
            metrics=['accuracy'])
model.fit(data, labels)
为什么要用函数式编程?

答案是,复杂的网络结构并不是都是线性的add进容器中的。并行的,重用的,什么情况都有。这时候callable的优势就发挥出来了。
比如下面的Google Inception模型,就是带并联的:

我们的代码自然是以并联应对并联了,一个输入input_img被三个模型所重用:
from keras.layers import Conv2D, MaxPooling2D, Input

input_img = Input(shape=(256, 256, 3))

tower_1 = Conv2D(64, (1, 1), padding='same', activation='relu')(input_img)
tower_1 = Conv2D(64, (3, 3), padding='same', activation='relu')(tower_1)

tower_2 = Conv2D(64, (1, 1), padding='same', activation='relu')(input_img)
tower_2 = Conv2D(64, (5, 5), padding='same', activation='relu')(tower_2)

tower_3 = MaxPooling2D((3, 3), strides=(1, 1), padding='same')(input_img)
tower_3 = Conv2D(64, (1, 1), padding='same', activation='relu')(tower_3)

output = keras.layers.concatenate(, axis=1)
案例教程
1. CNN处理MNIST手写识别

光说不练是假把式。我们来看看符合五步法的处理MNIST的例子。首先解析一下核心模型代码,因为模型是线性的,我们还是用Sequential容器:
核心是两个卷积层:
为了防止过拟合,我们加上一个最大池化层,再加上一个Dropout层:
下面要进入全连接层输出了,这两个中间的数据转换需要一个Flatten层:
下面是全连接层,激活函数是relu。 还怕过拟合,再来个Dropout层!
最后通过一个softmax激活函数的全连接网络输出:
model.add(Dense(num_classes, activation='softmax'))
下面是编译这个模型,损失函数是categorical_crossentropy多类对数损失函数,优化器选用Adadelta。
model.compile(loss=keras.losses.categorical_crossentropy,
            optimizer=keras.optimizers.Adadelta(),
            metrics=['accuracy'])



下面是可以运行的完整代码:
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K

batch_size = 128
num_classes = 10
epochs = 12


# input image dimensions
img_rows, img_cols = 28, 28


# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

if K.image_data_format() == 'channels_first':
    x_train = x_train.reshape(x_train.shape, 1, img_rows, img_cols)
    x_test = x_test.reshape(x_test.shape, 1, img_rows, img_cols)
    input_shape = (1, img_rows, img_cols)
else:
    x_train = x_train.reshape(x_train.shape, img_rows, img_cols, 1)
    x_test = x_test.reshape(x_test.shape, img_rows, img_cols, 1)
    input_shape = (img_rows, img_cols, 1)
   
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape, 'train samples')
print(x_test.shape, 'test samples')

# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
               activation='relu',
               input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,
            optimizer=keras.optimizers.Adadelta(),
            metrics=['accuracy'])
model.fit(x_train, y_train,
          batch_size=batch_size,
          epochs=epochs,
          verbose=1,
          validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score)
print('Test accuracy:', score)然后我们还是老办法,我们先看一下核心代码。没啥说的,这类序列化处理的问题用的一定是RNN,通常都是用LSTM.
encoder_inputs = Input(shape=(None, num_encoder_tokens))
encoder = LSTM(latent_dim, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
encoder_states =
decoder_inputs = Input(shape=(None, num_decoder_tokens))
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs,
                                     initial_state=encoder_states)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)
model = Model(, decoder_outputs)



优化器选用rmsprop,损失函数还是categorical_crossentropy。validation_split是将一个集合随机分成训练集和测试集。
# Run training
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
model.fit(, decoder_target_data,
          batch_size=batch_size,
          epochs=epochs,
          validation_split=0.2)
最后,训练一个模型不容易,我们将其存储起来。
model.save('s2s.h5')
最后,附上完整的实现了机器翻译功能的代码,加上注释和空行有100多行,供有需要的同学取用。
from __future__ import print_function

from keras.models import Model
from keras.layers import Input, LSTM, Dense
import numpy as np

batch_size = 64# Batch size for training.
epochs = 100# Number of epochs to train for.
latent_dim = 256# Latent dimensionality of the encoding space.
num_samples = 10000# Number of samples to train on.
# Path to the data txt file on disk.
data_path = 'fra-eng/fra.txt'

# Vectorize the data.
input_texts = []
target_texts = []
input_characters = set()
target_characters = set()
with open(data_path, 'r', encoding='utf-8') as f:
    lines = f.read().split('\n')
for line in lines[: min(num_samples, len(lines) - 1)]:
    input_text, target_text = line.split('\t')
    # We use "tab" as the "start sequence" character
    # for the targets, and "\n" as "end sequence" character.
    target_text = '\t' + target_text + '\n'
    input_texts.append(input_text)
    target_texts.append(target_text)
    for char in input_text:
      if char not in input_characters:
            input_characters.add(char)
    for char in target_text:
      if char not in target_characters:
            target_characters.add(char)

input_characters = sorted(list(input_characters))
target_characters = sorted(list(target_characters))
num_encoder_tokens = len(input_characters)
num_decoder_tokens = len(target_characters)
max_encoder_seq_length = max()
max_decoder_seq_length = max()

print('Number of samples:', len(input_texts))
print('Number of unique input tokens:', num_encoder_tokens)
print('Number of unique output tokens:', num_decoder_tokens)
print('Max sequence length for inputs:', max_encoder_seq_length)
print('Max sequence length for outputs:', max_decoder_seq_length)

input_token_index = dict(
    [(char, i) for i, char in enumerate(input_characters)])
target_token_index = dict(
    [(char, i) for i, char in enumerate(target_characters)])

encoder_input_data = np.zeros(
    (len(input_texts), max_encoder_seq_length, num_encoder_tokens),
    dtype='float32')
decoder_input_data = np.zeros(
    (len(input_texts), max_decoder_seq_length, num_decoder_tokens),
    dtype='float32')
decoder_target_data = np.zeros(
    (len(input_texts), max_decoder_seq_length, num_decoder_tokens),
    dtype='float32')

for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)):
    for t, char in enumerate(input_text):
      encoder_input_data] = 1.
    for t, char in enumerate(target_text):
      # decoder_target_data is ahead of decoder_input_data by one timestep
      decoder_input_data] = 1.
      if t > 0:
            # decoder_target_data will be ahead by one timestep
            # and will not include the start character.
            decoder_target_data] = 1.

# Define an input sequence and process it.
encoder_inputs = Input(shape=(None, num_encoder_tokens))
encoder = LSTM(latent_dim, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
# We discard `encoder_outputs` and only keep the states.
encoder_states =

# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None, num_decoder_tokens))
# We set up our decoder to return full output sequences,
# and to return internal states as well. We don't use the
# return states in the training model, but we will use them in inference.
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs,
                                     initial_state=encoder_states)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)

# Define the model that will turn
# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
model = Model(, decoder_outputs)

# Run training
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
model.fit(, decoder_target_data,
          batch_size=batch_size,
          epochs=epochs,
          validation_split=0.2)
# Save model
model.save('s2s.h5')

encoder_model = Model(encoder_inputs, encoder_states)

decoder_state_input_h = Input(shape=(latent_dim,))
decoder_state_input_c = Input(shape=(latent_dim,))
decoder_states_inputs =
decoder_outputs, state_h, state_c = decoder_lstm(
    decoder_inputs, initial_state=decoder_states_inputs)
decoder_states =
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model(
    + decoder_states_inputs,
    + decoder_states)

# Reverse-lookup token index to decode sequences back to
# something readable.
reverse_input_char_index = dict(
    (i, char) for char, i in input_token_index.items())
reverse_target_char_index = dict(
    (i, char) for char, i in target_token_index.items())


def decode_sequence(input_seq):
    # Encode the input as state vectors.
    states_value = encoder_model.predict(input_seq)

    # Generate empty target sequence of length 1.
    target_seq = np.zeros((1, 1, num_decoder_tokens))
    # Populate the first character of target sequence with the start character.
    target_seq] = 1.

    # Sampling loop for a batch of sequences
    # (to simplify, here we assume a batch of size 1).
    stop_condition = False
    decoded_sentence = ''
    while not stop_condition:
      output_tokens, h, c = decoder_model.predict(
             + states_value)

      # Sample a token
      sampled_token_index = np.argmax(output_tokens)
      sampled_char = reverse_target_char_index
      decoded_sentence += sampled_char

      # Exit condition: either hit max length
      # or find stop character.
      if (sampled_char == '\n' or
         len(decoded_sentence) > max_decoder_seq_length):
            stop_condition = True

      # Update the target sequence (of length 1).
      target_seq = np.zeros((1, 1, num_decoder_tokens))
      target_seq = 1.

      # Update states
      states_value =

    return decoded_sentence


for seq_index in range(100):
    # Take one sequence (part of the training set)
    # for trying out decoding.
    input_seq = encoder_input_data
    decoded_sentence = decode_sequence(input_seq)
    print('-')
    print('Input sentence:', input_texts)
    print('Decoded sentence:', decoded_sentence)


来源: weixin
作者: 数据派THU
原文链接:TensorFlow教程:快速入门深度学习五步法(附Keras实例)https://mp.weixin.qq.com/s/rT4QidHQJoSmvsbbzzT0uA




页: [1]
查看完整版本: TensorFlow 实战之利用5-4-9模型实现Keras