JVM深度解析和面试点1:HotSpot虚拟机对象及垃圾收集策略与算法
问题导读:1. HotSpot虚拟机对象的内存布局是怎么样的?
2. HotSpot虚拟机对象的创建、访问过程是怎么样的?
3. 垃圾收集策略与算法具体实现原理是怎么样的?
HotSpot虚拟机对象探秘
对象的内存布局
在 HotSpot 虚拟机中,对象的内存布局分为以下 3 块区域:
[*]对象头(Header)
[*]实例数据(Instance Data)
[*]对齐填充(Padding)
对象头
对象头记录了对象在运行过程中所需要使用的一些数据:
[*]哈希码
[*]GC 分代年龄
[*]锁状态标志
[*]线程持有的锁
[*]偏向线程 ID
[*]偏向时间戳
对象头可能包含类型指针,通过该指针能确定对象属于哪个类。如果对象是一个数组,那么对象头还会包括数组长度。
实例数据
实例数据部分就是成员变量的值,其中包括父类成员变量和本类成员变量。
对齐填充
用于确保对象的总长度为 8 字节的整数倍。
HotSpot VM 的自动内存管理系统要求对象的大小必须是 8 字节的整数倍。而对象头部分正好是 8 字节的倍数(1 倍或 2 倍),因此,当对象实例数据部分没有对齐时,就需要通过对齐填充来补全。
对齐填充并不是必然存在,也没有特别的含义,它仅仅起着占位符的作用。
对象的创建过程
类加载检查
虚拟机在解析.class文件时,若遇到一条 new 指令,首先它会去检查常量池中是否有这个类的符号引用,并且检查这个符号引用所代表的类是否已被加载、解析和初始化过。如果没有,那么必须先执行相应的类加载过程。
为新生对象分配内存
对象所需内存的大小在类加载完成后便可完全确定,接下来从堆中划分一块对应大小的内存空间给新的对象。分配堆中内存有两种方式:
[*]指针碰撞
如果 Java 堆中内存绝对规整(说明采用的是“复制算法”或“标记整理法”),空闲内存和已使用内存中间放着一个指针作为分界点指示器,那么分配内存时只需要把指针向空闲内存挪动一 段与对象大小一样的距离,这种分配方式称为“指针碰撞”。
[*]空闲列表
如果 Java 堆中内存并不规整,已使用的内存和空闲内存交错(说明采用的是标记-清除法,有碎片),此时没法简单进行指针碰撞, VM 必须维护一个列表,记录其中哪些内存块空闲可 用。分配之时从空闲列表中找到一块足够大的内存空间划分给对象实例。这种方式称为“空闲列表”。
初始化
分配完内存后,为对象中的成员变量赋上初始值,设置对象头信息,调用对象的构造函数方法进行初始化。
至此,整个对象的创建过程就完成了。
对象的访问方式
所有对象的存储空间都是在堆中分配的,但是这个对象的引用却是在堆栈中分配的。也就是说在建立一个对象时两个地方都分配内存,在堆中分配的内存实际建立这个对象,而在堆栈中分配的内存只是一个指向这个堆对象的指针(引用)而已。 那么根据引用存放的地址类型的不同,对象有不同的访问方式。
句柄访问方式
堆中需要有一块叫做“句柄池”的内存空间,句柄中包含了对象实例数据与类型数据各自的具体地址信息。
引用类型的变量存放的是该对象的句柄地址(reference)。访问对象时,首先需要通过引用类型的变量找到该对象的句柄,然后根据句柄中对象的地址找到对象。
直接指针访问方式
引用类型的变量直接存放对象的地址,从而不需要句柄池,通过引用能够直接访问对象。但对象所在的内存空间需要额外的策略存储对象所属的类信息的地址。
需要说明的是,HotSpot 采用第二种方式,即直接指针方式来访问对象,只需要一次寻址操作,所以在性能上比句柄访问方式快一倍。但像上面所说,它需要额外的策略来存储对象在方法区中类信息的地址。
垃圾收集策略与算法
程序计数器、虚拟机栈、本地方法栈随线程而生,也随线程而灭;栈帧随着方法的开始而入栈,随着方法的结束而出栈。这几个区域的内存分配和回收都具有确定性,在这几个区域内不需要过多考虑回收的问题,因为方法结束或者线程结束时,内存自然就跟随着回收了。
而对于 Java 堆和方法区,我们只有在程序运行期间才能知道会创建哪些对象,这部分内存的分配和回收都是动态的,垃圾收集器所关注的正是这部分内存。
判定对象是否存活
若一个对象不被任何对象或变量引用,那么它就是无效对象,需要被回收。
引用计数法
在对象头维护着一个 counter 计数器,对象被引用一次则计数器 +1;若引用失效则计数器 -1。当计数器为 0 时,就认为该对象无效了。
引用计数算法的实现简单,判定效率也很高,在大部分情况下它都是一个不错的算法。但是主流的 Java 虚拟机里没有选用引用计数算法来管理内存,主要是因为它很难解决对象之间循环引用的问题。
举个栗子👉对象 objA 和 objB 都有字段 instance,令 objA.instance = objB 并且 objB.instance = objA,由于它们互相引用着对方,导致它们的引用计数都不为 0,于是引用计数算法无法通知 GC 收集器回收它们。
可达性分析法
所有和 GC Roots 直接或间接关联的对象都是有效对象,和 GC Roots 没有关联的对象就是无效对象。
GC Roots 是指:
[*]Java 虚拟机栈(栈帧中的本地变量表)中引用的对象
[*]本地方法栈中引用的对象
[*]方法区中常量引用的对象
[*]方法区中类静态属性引用的对象
GC Roots 并不包括堆中对象所引用的对象,这样就不会有循环引用的问题。
引用的种类
判定对象是否存活与“引用”有关。在 JDK 1.2 以前,Java 中的引用定义很传统,一个对象只有被引用或者没有被引用两种状态,我们希望能描述这一类对象:当内存空间还足够时,则保留在内存中;如果内存空间在进行垃圾手收集后还是非常紧张,则可以抛弃这些对象。很多系统的缓存功能都符合这样的应用场景。
在 JDK 1.2 之后,Java 对引用的概念进行了扩充,将引用分为了以下四种。不同的引用类型,主要体现的是对象不同的可达性状态reachable和垃圾收集的影响。
强引用(Strong Reference)
类似 "Object obj = new Object()" 这类的引用,就是强引用,只要强引用存在,垃圾收集器永远不会回收被引用的对象。但是,如果我们错误地保持了强引用,比如:赋值给了 static 变量,那么对象在很长一段时间内不会被回收,会产生内存泄漏。
软引用(Soft Reference)
软引用是一种相对强引用弱化一些的引用,可以让对象豁免一些垃圾收集,只有当 JVM 认为内存不足时,才会去试图回收软引用指向的对象。JVM 会确保在抛出 OutOfMemoryError 之前,清理软引用指向的对象。软引用通常用来实现内存敏感的缓存,如果还有空闲内存,就可以暂时保留缓存,当内存不足时清理掉,这样就保证了使用缓存的同时,不会耗尽内存。
弱引用(Weak Reference)
弱引用的强度比软引用更弱一些。当 JVM 进行垃圾回收时,无论内存是否充足,都会回收被软引用关联的对象。
虚引用(Phantom Reference)
虚引用也称幽灵引用或者幻影引用,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响。它仅仅是提供了一种确保对象被 finalize 以后,做某些事情的机制,比如,通常用来做所谓的 Post-Mortem 清理机制。
回收堆中无效对象
对于可达性分析中不可达的对象,也并不是没有存活的可能。
判定 finalize() 是否有必要执行
JVM 会判断此对象是否有必要执行 finalize() 方法,如果对象没有覆盖 finalize() 方法,或者 finalize() 方法已经被虚拟机调用过,那么视为“没有必要执行”。那么对象基本上就真的被回收了。
如果对象被判定为有必要执行 finalize() 方法,那么对象会被放入一个 F-Queue 队列中,虚拟机会以较低的优先级执行这些 finalize()方法,但不会确保所有的 finalize() 方法都会执行结束。如果 finalize() 方法出现耗时操作,虚拟机就直接停止指向该方法,将对象清除。
对象重生或死亡
如果在执行 finalize() 方法时,将 this 赋给了某一个引用,那么该对象就重生了。如果没有,那么就会被垃圾收集器清除。
任何一个对象的 finalize() 方法只会被系统自动调用一次,如果对象面临下一次回收,它的 finalize() 方法不会被再次执行,想继续在 finalize() 中自救就失效了。
回收方法区内存
方法区中存放生命周期较长的类信息、常量、静态变量,每次垃圾收集只有少量的垃圾被清除。方法区中主要清除两种垃圾:
[*]废弃常量
[*]无用的类
判定废弃常量
只要常量池中的常量不被任何变量或对象引用,那么这些常量就会被清除掉。比如,一个字符串 "bingo" 进入了常量池,但是当前系统没有任何一个 String 对象引用常量池中的 "bingo" 常量,也没有其它地方引用这个字面量,必要的话,"bingo"常量会被清理出常量池。
判定无用的类
判定一个类是否是“无用的类”,条件较为苛刻。
[*]该类的所有对象都已经被清除
[*]加载该类的 ClassLoader 已经被回收
[*]该类的 java.lang.Class 对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。
一个类被虚拟机加载进方法区,那么在堆中就会有一个代表该类的对象:java.lang.Class。这个对象在类被加载进方法区时创建,在方法区该类被删除时清除。
垃圾收集算法
学会了如何判定无效对象、无用类、废弃常量之后,剩余工作就是回收这些垃圾。常见的垃圾收集算法有以下几个:
标记-清除算法
判断哪些数据需要清除,并对它们进行标记,然后清除被标记的数据。
这种方法有两个不足:
[*]效率问题:标记和清除两个过程的效率都不高。
[*]空间问题:标记清除之后会产生大量不连续的内存碎片,碎片太多可能导致以后需要分配较大对象时,无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。
复制算法(新生代)
为了解决效率问题,“复制”收集算法出现了。它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块内存用完,需要进行垃圾收集时,就将存活者的对象复制到另一块上面,然后将第一块内存全部清除。这种算法有优有劣:
[*]优点:不会有内存碎片的问题。
[*]缺点:内存缩小为原来的一半,浪费空间。
为了解决空间利用率问题,可以将内存分为三块: Eden、From Survivor、To Survivor,比例是 8:1:1,每次使用 Eden 和其中一块 Survivor。回收时,将 Eden 和 Survivor 中还存活的对象一次性复制到另外一块 Survivor 空间上,最后清理掉 Eden 和刚才使用的 Survivor 空间。这样只有 10% 的内存被浪费。
但是我们无法保证每次回收都只有不多于 10% 的对象存活,当 Survivor 空间不够,需要依赖其他内存(指老年代)进行分配担保。
分配担保
为对象分配内存空间时,如果 Eden+Survivor 中空闲区域无法装下该对象,会触发 MinorGC 进行垃圾收集。但如果 Minor GC 过后依然有超过 10% 的对象存活,这样存活的对象直接通过分配担保机制进入老年代,然后再将新对象存入 Eden 区。
标记-整理算法(老年代)
在回收垃圾前,首先将废弃对象做上标记,然后将未标记的对象移到一边,最后清空另一边区域即可。
这是一种老年代的垃圾收集算法。老年代的对象一般寿命比较长,因此每次垃圾回收会有大量对象存活,如果采用复制算法,每次需要复制大量存活的对象,效率很低。
分代收集算法
根据对象存活周期的不同,将内存划分为几块。一般是把 Java 堆分为新生代和老年代,针对各个年代的特点采用最适当的收集算法。
[*]新生代:复制算法
[*]老年代:标记-清除算法、标记-整理算法
(完)
文章作者:wangzhiwubigdata
文章来源1:HotSpot虚拟机对象探秘
文章来源2:垃圾收集策略与算法
页:
[1]