Apache Doris 整合 Iceberg+Flink CDC 构建实时湖仓一体的联邦查询分析架构
本帖最后由 levycui 于 2022-6-28 19:13 编辑问题导读:
1、如何设计大数据架构?
2、如何配置HDFS?如何配置YARN?
3、Doris 如何查询 Iceberg?
4、如何安装Doris?
本文概览
这篇教程将展示如何使用 Doris+Iceberg+Flink CDC 构建实时湖仓一体的联邦查询分析架构,Apache Doris 1.1 版本提供了 Iceberg 的支持,本文将主要展示 Doris 和 Iceberg 如何使用。
本教程中整个环境都是基于伪分布式环境搭建,按照步骤一步步完成,完整体验整个搭建操作的过程。
>>> 软件环境
本教程的演示环境如下:
[*] Centos7
[*] Apahce doris 1.1
[*] Hadoop 3.3.3
[*] hive 3.1.3
[*] Fink 1.14.4
[*] flink-sql-connector-mysql-cdc-2.2.1
[*] Apache Iceberg 0.13.2
[*] JDK 1.8.0_311
[*] MySQL 8.0.29
wget https://archive.apache.org/dist/hadoop/core/hadoop-3.3.3/hadoop-3.3.3.tar.gz
wget https://archive.apache.org/dist/hive/hive-3.1.3/apache-hive-3.1.3-bin.tar.gz
wget https://dlcdn.apache.org/flink/flink-1.14.4/flink-1.14.4-bin-scala_2.12.tgz
wget https://search.maven.org/remotecontent?filepath=org/apache/iceberg/iceberg-flink-runtime-1.14/0.13.2/iceberg-flink-runtime-1.14-0.13.2.jar
wget https://repository.cloudera.com/artifactory/cloudera-repos/org/apache/flink/flink-shaded-hadoop-3-uber/3.1.1.7.2.9.0-173-9.0/flink-shaded-hadoop-3-uber-3.1.1.7.2.9.0-173-9.0.jar
>>> 系统架构
[*] 首先我们从 Mysql 数据中使用 Flink,通过 Binlog 完成数据的实时采集
[*] 然后在 Flink 中创建 Iceberg 表,Iceberg 的元数据保存在 Hive 里
[*] 最后我们在 Doris 中创建 Iceberg 外表
[*] 再通过 Doris 统一查询入口完成对 Iceberg 里的数据查询分析,供前端应用调用,这里 Iceberg 外表的数据可以和 Doris 内部数据或者 Doris 其他外部数据源的数据进行关联查询分析
Doris 湖仓一体的联邦查询架构如下:
[*] Doris 通过 ODBC 方式支持:MySQL,Postgresql,Oracle ,SQLServer
[*] 同时支持 Elasticsearch 外表
[*] 1.0 版本支持 Hive 外表
[*] 1.1 版本支持 Iceberg 外表
[*] 1.2 版本支持 Hudi 外表
环境安装部署
>>> 安装 Hadoop、Hive
tar zxvf hadoop-3.3.3.tar.gz
tar zxvf apache-hive-3.1.3-bin.tar.gz
配置系统环境变量:
export HADOOP_HOME=/data/hadoop-3.3.3
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export HADOOP_HDFS_HOME=$HADOOP_HOME
export HIVE_HOME=/data/hive-3.1.3
export PATH=$PATH:$HADOOP_HOME/bin:$HIVE_HOME/bin:$HIVE_HOME/conf
>>> 配置 HDFS
[*] core-site.xml
vi etc/hadoop/core-site.xml
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost:9000</value>
</property>
</configuration>
[*] hdfs-site.xml
vi etc/hadoop/hdfs-site.xml
<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>/data/hdfs/namenode</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>/data/hdfs/datanode</value>
</property>
</configuration>
[*] 修改 Hadoop 启动脚本
sbin/start-dfs.sh
sbin/stop-dfs.sh
在文件开始加上下面的内容:
HDFS_DATANODE_USER=root
HADOOP_SECURE_DN_USER=hdfs
HDFS_NAMENODE_USER=root
HDFS_SECONDARYNAMENODE_USER=rootsbin/start-yarn.sh
sbin/start-yarn.sh
sbin/stop-yarn.sh
在文件开始加上下面的内容:
YARN_RESOURCEMANAGER_USER=root
HADOOP_SECURE_DN_USER=yarn
YARN_NODEMANAGER_USER=root
>>> 配置 Yarn
这里我改变了 Yarn 的一些端口,因为我是单机环境,和 Doris 的一些端口冲突。你可以不启动 Yarn。
vi etc/hadoop/yarn-site.xml
<property>
<name>yarn.resourcemanager.address</name>
<value>jiafeng-test:50056</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>jiafeng-test:50057</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>jiafeng-test:50058</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address</name>
<value>jiafeng-test:50059</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>jiafeng-test:9090</value>
</property>
<property>
<name>yarn.nodemanager.localizer.address</name>
<value>0.0.0.0:50060</value>
</property>
<property>
<name>yarn.nodemanager.webapp.address</name>
<value>0.0.0.0:50062</value>
</property>
vi etc/hadoop/mapred-site.xm
<property>
<name>mapreduce.jobhistory.address</name>
<value>0.0.0.0:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>0.0.0.0:19888</value>
</property>
<property>
<name>mapreduce.shuffle.port</name>
<value>50061</value>
</property>
[*] 启动 Hadoop
sbin/start-all.sh>>> 配置 Hive
[*] 创建 HDFS 目录
hdfs dfs -mkdir -p /user/hive/warehouse
hdfs dfs -mkdir /tmp
hdfs dfs -chmod g+w /user/hive/warehouse
hdfs dfs -chmod g+w /tmp
[*] 配置 Hive-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://localhost:3306/hive?createDatabaseIfNotExist=true</value>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>MyNewPass4!</value>
</property>
<property>
<name>hive.metastore.warehouse.dir</name>
<value>/user/hive/warehouse</value>
<description>location of default database for the warehouse</description>
</property>
<property>
<name>hive.metastore.uris</name>
<value/>
<description>Thrift URI for the remote metastore. Used by metastore client to connect to remote metastore.</description>
</property>
<property>
<name>javax.jdo.PersistenceManagerFactoryClass</name>
<value>org.datanucleus.api.jdo.JDOPersistenceManagerFactory</value>
</property>
<property>
<name>hive.metastore.schema.verification</name>
<value>false</value>
</property>
<property>
<name>datanucleus.schema.autoCreateAll</name>
<value>true</value>
</property>
</configuration>
[*] 配置 Hive-env.sh
加入以下内容:
HADOOP_HOME=/data/hadoop-3.3.3
[*] Hive 元数据初始化
schematool -initSchema -dbType mysql
[*] 启动 Hive metaservice
后台运行:
nohup bin/hive --service metaservice 1>/dev/null 2>&1 &
验证:
lsof -i:9083
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
java 20700 root 567u IPv6 54605348 0t0 TCP *:emc-pp-mgmtsvc (LISTEN)
>>> 安装 MySql
具体请参照这里:使用 Flink CDC 实现 MySQL 数据实时入 Apache Doris
复制到浏览器打开:
https://doris.apache.org/zh-CN/blogs/PracticalCases/flink-cdc-to-doris.html#_4-3-%E5%AE%89%E8%A3%85%E9%85%8D%E7%BD%AE-mysql
[*] 创建 MySql 数据库表并初始化数据
CREATE DATABASE demo;
USE demo;
CREATE TABLE userinfo (
id int NOT NULL AUTO_INCREMENT,
name VARCHAR(255) NOT NULL DEFAULT 'flink',
address VARCHAR(1024),
phone_number VARCHAR(512),
email VARCHAR(255),
PRIMARY KEY (`id`)
)ENGINE=InnoDB ;
INSERT INTO userinfo VALUES (10001,'user_110','Shanghai','13347420870', NULL);
INSERT INTO userinfo VALUES (10002,'user_111','xian','13347420870', NULL);
INSERT INTO userinfo VALUES (10003,'user_112','beijing','13347420870', NULL);
INSERT INTO userinfo VALUES (10004,'user_113','shenzheng','13347420870', NULL);
INSERT INTO userinfo VALUES (10005,'user_114','hangzhou','13347420870', NULL);
INSERT INTO userinfo VALUES (10006,'user_115','guizhou','13347420870', NULL);
INSERT INTO userinfo VALUES (10007,'user_116','chengdu','13347420870', NULL);
INSERT INTO userinfo VALUES (10008,'user_117','guangzhou','13347420870', NULL);
INSERT INTO userinfo VALUES (10009,'user_118','xian','13347420870', NULL);
>>> 安装 Flink
tar zxvf flink-1.14.4-bin-scala_2.12.tgz
然后将下面的依赖拷贝到 Flink 安装目录下的 lib 目录下,具体的依赖的 lib 文件如下:
下面将几个 Hadoop 和 Flink 里没有的依赖下载地址放在下面:
wget https://repo1.maven.org/maven2/com/ververica/flink-sql-connector-mysql-cdc/2.2.1/flink-sql-connector-mysql-cdc-2.2.1.jar
wget https://repo1.maven.org/maven2/org/apache/thrift/libfb303/0.9.3/libfb303-0.9.3.jar
wget https://search.maven.org/remotecontent?filepath=org/apache/iceberg/iceberg-flink-runtime-1.14/0.13.2/iceberg-flink-runtime-1.14-0.13.2.jar
wget https://repository.cloudera.com/artifactory/cloudera-repos/org/apache/flink/flink-shaded-hadoop-3-uber/3.1.1.7.2.9.0-173-9.0/flink-shaded-hadoop-3-uber-3.1.1.7.2.9.0-173-9.0.jar
其他的:
hadoop-3.3.3/share/hadoop/common/lib/commons-configuration2-2.1.1.jar
hadoop-3.3.3/share/hadoop/common/lib/commons-logging-1.1.3.jar
hadoop-3.3.3/share/hadoop/tools/lib/hadoop-archive-logs-3.3.3.jar
hadoop-3.3.3/share/hadoop/common/lib/hadoop-auth-3.3.3.jar
hadoop-3.3.3/share/hadoop/common/lib/hadoop-annotations-3.3.3.jar
hadoop-3.3.3/share/hadoop/common/hadoop-common-3.3.3.jar
adoop-3.3.3/share/hadoop/hdfs/hadoop-hdfs-3.3.3.jar
hadoop-3.3.3/share/hadoop/client/hadoop-client-api-3.3.3.jar
hive-3.1.3/lib/hive-exec-3.1.3.jar
hive-3.1.3/lib/hive-metastore-3.1.3.jar
hive-3.1.3/lib/hive-hcatalog-core-3.1.3.jar
[*] 启动 Flink
bin/start-cluster.sh
启动后的界面如下:
[*] 进入 Flink SQL Client
bin/sql-client.sh embedded
开启 Checkpoint,每隔 3 秒做一次 Checkpoint
Checkpoint 默认是不开启的,我们需要开启 Checkpoint 来让 Iceberg 可以提交事务。并且,MySql-CDC 在 Binlog 读取阶段开始前,需要等待一个完整的 Checkpoint 来避免 Binlog 记录乱序的问题。
注意:这里是演示环境,Checkpoint 的间隔设置比较短,线上使用,建议设置为3-5分钟一次 Checkpoint。
Flink SQL> SET execution.checkpointing.interval = 3s;
Session property has been set.
创建 Iceberg Catalog
CREATE CATALOG hive_catalog WITH (
'type'='iceberg',
'catalog-type'='hive',
'uri'='thrift://localhost:9083',
'clients'='5',
'property-version'='1',
'warehouse'='hdfs://localhost:8020/user/hive/warehouse'
);
查看 Catalog
Flink SQL> show catalogs;
+-----------------+
| catalog name |
+-----------------+
| default_catalog |
| hive_catalog |
+-----------------+
2 rows in set
创建 MySql CDC 表
CREATE TABLE user_source (
database_name STRING METADATA VIRTUAL,
table_name STRING METADATA VIRTUAL,
`id` DECIMAL(20, 0) NOT NULL,
name STRING,
address STRING,
phone_number STRING,
email STRING,
PRIMARY KEY (`id`) NOT ENFORCED
) WITH (
'connector' = 'mysql-cdc',
'hostname' = 'localhost',
'port' = '3306',
'username' = 'root',
'password' = 'MyNewPass4!',
'database-name' = 'demo',
'table-name' = 'userinfo'
);
查询 CDC 表:
select * from user_source;
创建 Iceberg 表
---查看catalog
show catalogs;
---使用catalog
use catalog hive_catalog;
--创建数据库
CREATE DATABASE iceberg_hive;
--使用数据库
use iceberg_hive;
创建表
CREATE TABLE all_users_info (
database_name STRING,
table_name STRING,
`id` DECIMAL(20, 0) NOT NULL,
name STRING,
address STRING,
phone_number STRING,
email STRING,
PRIMARY KEY (database_name, table_name, `id`) NOT ENFORCED
) WITH (
'catalog-type'='hive'
);
从 CDC 表里插入数据到 Iceberg 表里
use catalog default_catalog;
insert into hive_catalog.iceberg_hive.all_users_info select * from user_source;
在 Web 界面可以看到任务的运行情况
然后停掉任务,我们去查询 Iceberg 表
select * from hive_catalog.iceberg_hive.all_users_info
可以看到下面的结果:
我们去 HDFS 上可以看到 Hive 目录下的数据及对应的元数据:
我们也可以通过 Hive 建好 Iceberg 表,然后通过 Flink 将数据插入到表里:
下载 Iceberg Hive 运行依赖
wget https://repo1.maven.org/maven2/org/apache/iceberg/iceberg-hive-runtime/0.13.2/iceberg-hive-runtime-0.13.2.jar
在 Hive Shell 下执行:
SET engine.hive.enabled=true;
SET iceberg.engine.hive.enabled=true;
SET iceberg.mr.catalog=hive;
add jar /path/to/iiceberg-hive-runtime-0.13.2.jar;
创建表
CREATE EXTERNAL TABLE iceberg_hive(
`id` int,
`name` string)
STORED BY 'org.apache.iceberg.mr.hive.HiveIcebergStorageHandler'
LOCATION 'hdfs://localhost:8020/user/hive/warehouse/iceber_db/iceberg_hive'
TBLPROPERTIES (
'iceberg.mr.catalog'='hadoop',
'iceberg.mr.catalog.hadoop.warehouse.location'='hdfs://localhost:8020/user/hive/warehouse/iceber_db/iceberg_hive'
);
然后在 Flink SQL Client 下执行下面语句将数据插入到 Iceber 表里
INSERT INTO hive_catalog.iceberg_hive.iceberg_hive values(2, 'c');
INSERT INTO hive_catalog.iceberg_hive.iceberg_hive values(3, 'zhangfeng');');
查询这个表
select * from hive_catalog.iceberg_hive.iceberg_hive
可以看到下面的结果:
Doris 查询 Iceberg
Apache Doris 提供了直接访问 Iceberg 外部表的能力,外部表省去了繁琐的数据导入工作,并借助 Doris 本身 OLAP 的能力来解决 Iceberg 表的数据分析问题:
[*] 支持 Iceberg 数据源接入 Doris
[*] 支持 Doris 与 Iceberg 数据源中的表联合查询,进行更加复杂的分析操作
>>> 安装 Doris
这里我们不再详细讲解 Doris 的安装,如果你不知道怎么安装 Doris请参照官方文档:快速入门
复制到浏览器打开:
https://doris.apache.org/zh-CN/d ... /get-starting.html#环境准备
[*] 创建 Iceberg 外表
CREATE TABLE `all_users_info`
ENGINE = ICEBERG
PROPERTIES (
"iceberg.database" = "iceberg_hive",
"iceberg.table" = "all_users_info",
"iceberg.hive.metastore.uris" = "thrift://localhost:9083",
"iceberg.catalog.type" = "HIVE_CATALOG"
);
参数说明:
ENGINE 需要指定为 ICEBERG
PROPERTIES 属性:
iceberg.hive.metastore.uris:Hive Metastore 服务地址
iceberg.database:挂载 Iceberg 对应的数据库名
iceberg.table:挂载 Iceberg 对应的表名,挂载 Iceberg database 时无需指定。
iceberg.catalog.type:Iceberg 中使用的 Catalog 方式,默认为 HIVE_CATALOG,当前仅支持该方式,后续会支持更多的 Iceberg catalog 接入方式。
mysql> CREATE TABLE `all_users_info`
-> ENGINE = ICEBERG
-> PROPERTIES (
-> "iceberg.database" = "iceberg_hive",
-> "iceberg.table" = "all_users_info",
-> "iceberg.hive.metastore.uris"="thrift://localhost:9083",
-> "iceberg.catalog.type"="HIVE_CATALOG"
-> );
Query OK, 0 rows affected (0.23 sec)
mysql> select * from all_users_info;
+---------------+------------+-------+----------+-----------+--------------+-------+
| database_name | table_name | id | name | address | phone_number | email |
+---------------+------------+-------+----------+-----------+--------------+-------+
| demo | userinfo | 10004 | user_113 | shenzheng | 13347420870| NULL|
| demo | userinfo | 10005 | user_114 | hangzhou| 13347420870| NULL|
| demo | userinfo | 10002 | user_111 | xian | 13347420870| NULL|
| demo | userinfo | 10003 | user_112 | beijing | 13347420870| NULL|
| demo | userinfo | 10001 | user_110 | Shanghai| 13347420870| NULL|
| demo | userinfo | 10008 | user_117 | guangzhou | 13347420870| NULL|
| demo | userinfo | 10009 | user_118 | xian | 13347420870| NULL|
| demo | userinfo | 10006 | user_115 | guizhou | 13347420870| NULL|
| demo | userinfo | 10007 | user_116 | chengdu | 13347420870| NULL|
+---------------+------------+-------+----------+-----------+--------------+-------+
9 rows in set (0.18 sec)
[*] 同步挂载
当 Iceberg 表 Schema 发生变更时,可以通过 REFRESH 命令手动同步,该命令会将 Doris 中的 Iceberg 外表删除重建。
-- 同步 Iceberg 表
REFRESH TABLE t_iceberg;
-- 同步 Iceberg 数据库
REFRESH DATABASE iceberg_test_db;
[*] Doris 和 Iceberg 数据类型对应关系
支持的 Iceberg 列类型与 Doris 对应关系如下表:
注意事项
[*] Iceberg 表 Schema 变更不会自动同步,需要在 Doris 中通过 REFRESH 命令同步 Iceberg 外表或数据库。
[*] 当前默认支持的 Iceberg 版本为 0.12.0,0.13.x,未在其他版本进行测试。后续后支持更多版本。
[*] Doris FE 配置
下面几个配置属于 Iceberg 外表系统级别的配置,可以通过修改 fe.conf 来配置,也可以通过 ADMIN SET CONFIG 来配置。
[*] iceberg_table_creation_strict_mode
创建 Iceberg 表默认开启 strict mode。strict mode 是指对 Iceberg 表的列类型进行严格过滤,如果有 Doris 目前不支持的数据类型,则创建外表失败。
[*] iceberg_table_creation_interval_second
自动创建 Iceberg 表的后台任务执行间隔,默认为 10s。
[*] max_iceberg_table_creation_record_size
Iceberg 表创建记录保留的最大值,默认为 2000,仅针对创建 Iceberg 数据库记录。
总结
这里 Doris On Iceberg 我们只演示了 Iceberg 单表的查询,你还可以联合 Doris 的表,或者其他的 ODBC 外表,Hive 外表,ES 外表等进行联合查询分析,通过 Doris 对外提供统一的查询分析入口。
到这里我们从完整搭建 Hadoop、Hive、Flink 、MySql、Doris 及 Doris On Iceberg 的使用已经全部介绍完了。
作者:张家锋
来源:https://mp.weixin.qq.com/s/VnqlJ763nGWyOe1FJ8gt2g
最新经典文章,欢迎关注公众号http://www.aboutyun.com/data/attachment/forum/201903/18/215536lzpn7n3u7m7u90vm.jpg
页:
[1]