linshi0591 发表于 2014-4-4 22:24:34

hadoop深入研究:(七)——压缩

本帖最后由 pig2 于 2014-4-4 23:09 编辑

1.为什么进行文件压缩?
2.hadoop支持哪几种压缩格式?
3.快速压缩该如何表示?
4.bzip2压缩与gzip压缩各有什么优点和缺点?
5.该如何提高压缩效率?

文件压缩主要有两个好处,一是减少了存储文件所占空间,另一个就是为数据传输提速。在hadoop大数据的背景下,这两点尤为重要,那么我现在就先来了解下hadoop中的文件压缩。

hadoop里支持很多种压缩格式,我们看一个表格:




DEFLATE是同时使用了LZ77算法与哈夫曼编码(Huffman Coding)的一个无损数据压缩算法,源代码可以在zlib库中找到。gzip是以DEFLATE算法为基础扩展出来的一种算法。

所有的压缩算法都是空间和时间的转换,更快压缩时间还是更小的压缩比,可以通过参数来指定,-1意味着速度,-9意味着空间。拿gzip做个例子,下面就意味着更快速的压缩:


gzip -1 file
gzip在时间和空间上的取舍比较折中,bzip2压缩比gzip更有效,但是速度更慢。bzip2的解压速度比它的压缩速度要快。但是和其他压缩格式比又是最慢的,但是压缩效果明显是最好的。snappy和lz4的解压速度比lzo好很多。
splittable表示压缩格式是否可以被分割,也就是说是否支持随即读。压缩数据是否能被mapreduce使用,压缩数据是否能被分割就很关键了。

举个例子,一个未压缩的文件有1GB大小,hdfs默认的block大小是64MB,那么这个文件就会被分为16个block作为mapreduce的输入,每一个单独使用一个map任务。如果这个文件是已经使用gzip压缩的呢,如果分成16个块,每个块做成一个输入,显然是不合适的,因为gzip压缩流的随即读是不可能的。实际上,当mapreduce处理压缩格式的文件的时候它会认识到这是一个gzip的压缩文件,而gzip又不支持随即读,它就会把16个块分给一个map去处理,这里就会有很多非本地处理的map任务,整个过程耗费的时间就会相当长。

lzo压缩格式也会是同样的问题,但是通过使用hadoop lzo库的索引工具以后,lzo就可以支持splittable。bzip2也是支持splittable的。那么如何选择压缩格式呢?这取决于文件的大小,你使用的压缩工具,下面是几条选择建议:
效率由高到低排序:

1.用一些包含了压缩并且支持splittable的文件格式,比如Sequence File,RCFile或者Avro文件,这些文件格式我们之后都会讲到。如果为了快速压缩可以使用lzo,lz4或者snappy压缩格式。
2.使用提供splittable的压缩格式,比如,bzip2和索引后可以支持splittable的lzo。
3.提前把文件分成几个块,每个块单独压缩,这样就无需考虑splittable的问题了
4.不要压缩文件以不支持splittable的压缩格式存储一个很大的数据文件是不合适的,非本地处理效率会非常之低。


转载请标明出处:hadoop深入研究:(七)——压缩



页: [1]
查看完整版本: hadoop深入研究:(七)——压缩