sunshine_junge 发表于 2014-7-7 21:21:48

Spark源码系列(五)分布式缓存

本帖最后由 pig2 于 2017-3-1 15:53 编辑



问题导读:

spark缓存是如何实现的?
BlockManager与BlockManagerMaster的关系是什么?static/image/hrline/4.gif




这一章想讲一下Spark的缓存是如何实现的。这个persist方法是在RDD里面的,所以我们直接打开RDD这个类。

def persist(newLevel: StorageLevel): this.type = {
    // StorageLevel不能随意更改
    if (storageLevel != StorageLevel.NONE && newLevel != storageLevel) {
      throw new UnsupportedOperationException("Cannot change storage level of an RDD after it was already assigned a level")
    }
    sc.persistRDD(this)
    // Register the RDD with the ContextCleaner for automatic GC-based cleanup
    // 注册清理方法
    sc.cleaner.foreach(_.registerRDDForCleanup(this))
    storageLevel = newLevel
    this
}


它调用SparkContext去缓存这个RDD,追杀下去。
private def persistRDD(rdd: RDD) {
    persistentRdds(rdd.id) = rdd
}


它居然是用一个HashMap来存的,具体看这个map的类型是TimeStampedWeakValueHashMap]类型。把存进去的值都隐式转换成WeakReference,然后加到一个内部的一个ConcurrentHashMap里面。这里貌似也没干啥,这是有个鸟蛋用。。大神莫喷,知道干啥用的人希望告诉我一下。

CacheManager
现在并没有保存,等到真正运行Task运行的时候才会去缓存起来。入口在Task的runTask方法里面,具体的我们可以看ResultTask,它调用了RDD的iterator方法。

final def iterator(split: Partition, context: TaskContext): Iterator = {
    if (storageLevel != StorageLevel.NONE) {
      SparkEnv.get.cacheManager.getOrCompute(this, split, context, storageLevel)
    } else {
      computeOrReadCheckpoint(split, context)
    }
}


一旦设置了StorageLevel,就要从SparkEnv的cacheManager取数据。

def getOrCompute(rdd: RDD, split: Partition, context: TaskContext, storageLevel: StorageLevel): Iterator = {
    val key = RDDBlockId(rdd.id, split.index)
    blockManager.get(key) match {
      case Some(values) =>
      // 已经有了,直接返回就可以了
      new InterruptibleIterator(context, values.asInstanceOf])

      case None =>
      // loading包含这个key表示已经有人在加载了,等到loading被释放了,就可以去blockManager里面取到了
      loading.synchronized {
          if (loading.contains(key)) {
            while (loading.contains(key)) {
            try {
                loading.wait()
            } catch {
                case e: Exception =>
                  logWarning(s"Got an exception while waiting for another thread to load $key", e)
            }
            }
            // 别人成功拿到了,我们直接取结果就是了,如果别人取失败了,我们再来取一次
            blockManager.get(key) match {
            case Some(values) =>
                return new InterruptibleIterator(context, values.asInstanceOf])
            case None =>
                loading.add(key)
            }
          } else {
            loading.add(key)
          }
      }
      try {
          // 通过rdd自身的compute方法去计算得到结果,回去看看RDD那文章,自己看看源码就清楚了
          val computedValues = rdd.computeOrReadCheckpoint(split, context)

          // 如果是本地运行的,就没必要缓存了,直接返回即可
          if (context.runningLocally) {
            return computedValues
          }

          // 跟踪blocks的更新状态
          var updatedBlocks = Seq[(BlockId, BlockStatus)]()
          val returnValue: Iterator = {
            if (storageLevel.useDisk && !storageLevel.useMemory) {
            /* 这是RDD采用DISK_ONLY的情况,直接扔给blockManager
               * 然后把结果直接返回,它不需要把结果一下子全部加载进内存
               * 这同样适用于MEMORY_ONLY_SER,但是我们需要在启用它之前确认blocks没被block store给丢弃 */
            updatedBlocks = blockManager.put(key, computedValues, storageLevel, tellMaster = true)
            blockManager.get(key) match {
                case Some(values) =>
                  values.asInstanceOf]
                case None =>
                  throw new Exception("Block manager failed to return persisted valued")
            }
            } else {
            // 先存到一个ArrayBuffer,然后一次返回,在blockManager里也存一份
            val elements = new ArrayBuffer
            elements ++= computedValues
            updatedBlocks = blockManager.put(key, elements, storageLevel, tellMaster = true)
            elements.iterator.asInstanceOf]
            }
          }

          // 更新task的监控参数
          val metrics = context.taskMetrics
          metrics.updatedBlocks = Some(updatedBlocks)

          new InterruptibleIterator(context, returnValue)

      } finally {
          // 改完了,释放锁
          loading.synchronized {
            loading.remove(key)
            loading.notifyAll()
          }
      }
    }
}


1、如果blockManager当中有,直接从blockManager当中取。2、如果blockManager没有,就先用RDD的compute函数得到出来一个Iterable接口。3、如果StorageLevel是只保存在硬盘的话,就把值存在blockManager当中,然后从blockManager当中取,这样的好处是不会一次把数据全部加载进内存。4、如果StorageLevel是需要使用内存的情况,就把结果添加到一个ArrayBuffer当中一次返回,另外在blockManager存上一份,下次直接从blockManager取。
对StorageLevel说明一下吧,贴一下它的源码。

class StorageLevel private(
    private var useDisk_ : Boolean,
    private var useMemory_ : Boolean,
    private var useOffHeap_ : Boolean,
    private var deserialized_ : Boolean,
    private var replication_ : Int = 1)

val NONE = new StorageLevel(false, false, false, false)
val DISK_ONLY = new StorageLevel(true, false, false, false)
val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
val MEMORY_ONLY = new StorageLevel(false, true, false, true)
val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2)
val OFF_HEAP = new StorageLevel(false, false, true, false)


大家注意看它那几个参数,useDisk_、useMemory_、useOffHeap_、deserialized_、replication_ 在具体的类型的时候是传的什么值。
下面我们的目标要放到blockManager。

BlockManager
BlockManager这个类比较大,我们从两方面开始看吧,putBytes和get方法。先从putBytes说起,之前说过Task运行结束之后,结果超过10M的话,会用BlockManager缓存起来。
env.blockManager.putBytes(blockId, serializedDirectResult, StorageLevel.MEMORY_AND_DISK_SER)


putBytes内部又掉了另外一个方法doPut,方法很大呀,先折叠起来。
private def doPut(
      blockId: BlockId,
      data: Values,
      level: StorageLevel,
      tellMaster: Boolean = true): Seq[(BlockId, BlockStatus)] = {// Return value
    val updatedBlocks = new ArrayBuffer[(BlockId, BlockStatus)]

    // 记录它的StorageLevel,以便我们可以在它加载进内存之后,可以按需写入硬盘。
  // 此外,在我们把调用BlockInfo的markReay方法之前,都没法通过get方法获得该部分内容
    val putBlockInfo = {
      val tinfo = new BlockInfo(level, tellMaster)
      // 如果不存在,就添加到blockInfo里面
      val oldBlockOpt = blockInfo.putIfAbsent(blockId, tinfo)
      if (oldBlockOpt.isDefined) {
      // 如果已经存在了,就不需要重复添加了
      if (oldBlockOpt.get.waitForReady()) {return updatedBlocks
      }
      // 存在于blockInfo当中->但是上一次保存失败了,拿出旧的信息,再试一遍
      oldBlockOpt.get
      } else {
      tinfo
      }
    }

    val startTimeMs = System.currentTimeMillis
    // 当我们需要存储数据,并且要复制数据到别的机器,我们需要访问它的值,但是因为我们的put操作会读取整个iterator,
    // 这就不会有任何的值留下。在我们保存序列化的数据的场景,我们可以记住这些bytes,但在其他场景,比如反序列化存储的
    // 时候,我们就必须依赖返回一个Iterator
    var valuesAfterPut: Iterator = null
    // Ditto for the bytes after the put
    var bytesAfterPut: ByteBuffer = null
    // Size of the block in bytes
    var size = 0L

    // 在保存数据之前,我们要实例化,在数据已经序列化并且准备好发送的情况下,这个过程是很快的
    val replicationFuture = if (data.isInstanceOf && level.replication > 1) {
      // duplicate并不是复制这些数据,只是做了一个包装
      val bufferView = data.asInstanceOf.buffer.duplicate()
      Future {
      // 把block复制到别的机器上去
      replicate(blockId, bufferView, level)
      }
    } else {
      null
    }

    putBlockInfo.synchronized {

      var marked = false
      try {
      if (level.useMemory) {
          // 首先是保存到内存里面,尽管它也使用硬盘,等内存不够的时候,才会写入硬盘
          // 下面分了三种情况,但是Task的结果是ByteBufferValues这种情况,具体看putBytes方法
          val res = data match {
            case IteratorValues(iterator) =>
            memoryStore.putValues(blockId, iterator, level, true)
            case ArrayBufferValues(array) =>
            memoryStore.putValues(blockId, array, level, true)
            case ByteBufferValues(bytes) =>
            bytes.rewind()
            memoryStore.putBytes(blockId, bytes, level)
          }
          size = res.size
          // 这里写得那么恶心,是跟data的类型有关系的,data: Either, ByteBuffer],Left是Iterator,Right是ByteBuffer
          res.data match {
            case Right(newBytes) => bytesAfterPut = newBytes
            case Left(newIterator) => valuesAfterPut = newIterator
          }
          // 把被置换到硬盘的blocks记录到updatedBlocks上
          res.droppedBlocks.foreach { block => updatedBlocks += block }
      } else if (level.useOffHeap) {
          // 保存到Tachyon上.
          val res = data match {
            case IteratorValues(iterator) =>
            tachyonStore.putValues(blockId, iterator, level, false)
            case ArrayBufferValues(array) =>
            tachyonStore.putValues(blockId, array, level, false)
            case ByteBufferValues(bytes) =>
            bytes.rewind()
            tachyonStore.putBytes(blockId, bytes, level)
          }
          size = res.size
          res.data match {
            case Right(newBytes) => bytesAfterPut = newBytes
            case _ =>
          }
      } else {
          // 直接保存到硬盘,不要复制到其它节点的就别返回数据了.
          val askForBytes = level.replication > 1
          val res = data match {
            case IteratorValues(iterator) =>
            diskStore.putValues(blockId, iterator, level, askForBytes)
            case ArrayBufferValues(array) =>
            diskStore.putValues(blockId, array, level, askForBytes)
            case ByteBufferValues(bytes) =>
            bytes.rewind()
            diskStore.putBytes(blockId, bytes, level)
          }
          size = res.size
          res.data match {
            case Right(newBytes) => bytesAfterPut = newBytes
            case _ =>
          }
      }
     // 通过blockId获得当前的block状态
      val putBlockStatus = getCurrentBlockStatus(blockId, putBlockInfo)
      if (putBlockStatus.storageLevel != StorageLevel.NONE) {
          // 成功了,把该block标记为ready,通知BlockManagerMaster
          marked = true
          putBlockInfo.markReady(size)
          if (tellMaster) {
            reportBlockStatus(blockId, putBlockInfo, putBlockStatus)
          }
          updatedBlocks += ((blockId, putBlockStatus))
      }
      } finally {
      // 如果没有标记成功,就把该block信息清除
       if (!marked) {
          blockInfo.remove(blockId)
          putBlockInfo.markFailure()
      }
      }
    }

    // 把数据发送到别的节点做备份
    if (level.replication > 1) {
      data match {
      case ByteBufferValues(bytes) => Await.ready(replicationFuture, Duration.Inf)
      case _ => {
          val remoteStartTime = System.currentTimeMillis
          // 把Iterator里面的数据序列化之后,发送到别的节点
          if (bytesAfterPut == null) {
            if (valuesAfterPut == null) {
            throw new SparkException("Underlying put returned neither an Iterator nor bytes! This shouldn't happen.")
            }
            bytesAfterPut = dataSerialize(blockId, valuesAfterPut)
          }
          replicate(blockId, bytesAfterPut, level)
      }
      }
    }
    // 销毁bytesAfterPut
    BlockManager.dispose(bytesAfterPut)
    updatedBlocks
}


从上面的的来看:
1、存储的时候按照不同的存储级别分了3种情况来处理:存在内存当中(包括MEMORY字样的),存在tachyon上(OFF_HEAP),只存在硬盘上(DISK_ONLY)。2、存储完成之后会根据存储级别决定是否发送到别的节点,在名字上最后带2字的都是这种,2表示一个block会在两个节点上保存。3、存储完毕之后,会向BlockManagerMaster汇报block的情况。4、这里面的序列化其实是先压缩后序列化,默认使用的是LZF压缩,可以通过spark.io.compression.codec设定为snappy或者lzo,序列化方式通过spark.serializer设置,默认是JavaSerializer。

http://images.cnitblog.com/i/477362/201407/030207040902782.jpg

接下来我们再看get的情况。

   val local = getLocal(blockId)
    if (local.isDefined) return local
    val remote = getRemote(blockId)
    if (remote.isDefined) return remote
    None


先从本地取,本地没有再去别的节点取,都没有,返回None。从本地取就不说了,怎么进怎么出。讲一下怎么从别的节点去,它们是一个什么样子的关系?
我们先看getRemote方法

private def doGetRemote(blockId: BlockId, asValues: Boolean): Option = {
    val locations = Random.shuffle(master.getLocations(blockId))
    for (loc <- locations) {
      val data = BlockManagerWorker.syncGetBlock(GetBlock(blockId), ConnectionManagerId(loc.host, loc.port))
      if (data != null) {
      if (asValues) {
          return Some(dataDeserialize(blockId, data))
      } else {
          return Some(data)
      }
      }
    }
    None
}


这个方法包括两个步骤:
1、用blockId通过master的getLocations方法找到它的位置。2、通过BlockManagerWorker.syncGetBlock到指定的节点获取数据。ok,下面就重点讲BlockManager和BlockManagerMaster之间的关系,以及BlockManager之间是如何相互传输数据。

BlockManager与BlockManagerMaster的关系
BlockManager我们使用的时候是从SparkEnv.get获得的,我们观察了一下SparkEnv,发现它包含了我们运行时候常用的那些东东。那它创建是怎么创建的呢,我们找到SparkEnv里面的create方法,右键FindUsages,就会找到两个地方调用了,一个是SparkContext,另一个是Executor。在SparkEnv的create方法里面会实例化一个BlockManager和BlockManagerMaster。这里我们需要注意看BlockManagerMaster的实例化方法,里面调用了registerOrLookup方法。


    def registerOrLookup(name: String, newActor: => Actor): ActorRef = {
      if (isDriver) {
      actorSystem.actorOf(Props(newActor), name = name)
      } else {
      val driverHost: String = conf.get("spark.driver.host", "localhost")
      val driverPort: Int = conf.getInt("spark.driver.port", 7077)
      Utils.checkHost(driverHost, "Expected hostname")
      val url = s"akka.tcp://spark@$driverHost:$driverPort/user/$name"
      val timeout = AkkaUtils.lookupTimeout(conf)
      Await.result(actorSystem.actorSelection(url).resolveOne(timeout), timeout)
      }
    }


所以从这里可以看出来,除了Driver之后的actor都是,都是持有的Driver的引用ActorRef。梳理一下,我们可以得出以下结论:
1、SparkContext持有一个BlockManager和BlockManagerMaster。2、每一个Executor都持有一个BlockManager和BlockManagerMaster。3、Executor和SparkContext的BlockManagerMaster通过BlockManagerMasterActor来通信。
接下来,我们看看BlockManagerMasterActor里的三组映射关系。

// 1、BlockManagerId和BlockManagerInfo的映射关系
private val blockManagerInfo = new mutable.HashMap
// 2、Executor ID 和 Block manager ID的映射关系
private val blockManagerIdByExecutor = new mutable.HashMap
// 3、BlockId和保存它的BlockManagerId的映射关系
private val blockLocations = new JHashMap]


看到这三组关系,前面的getLocations方法不用看它的实现,我们都应该知道是怎么找了。

BlockManager相互传输数据
BlockManager之间发送数据和接受数据是通过BlockManagerWorker的syncPutBlock和syncGetBlock方法来实现。看BlockManagerWorker的注释,说是BlockManager的网络接口,采用的是事件驱动模型。
再仔细看这两个方法,它传输的数据包装成BlockMessage之后,通过ConnectionManager的sendMessageReliablySync方法来传输。
接下来的故事就是nio之间的发送和接收了,就简单说几点吧:
1、ConnectionManager内部实例化一个selectorThread线程来接收消息,具体请看run方法。2、Connection发送数据的时候,是一次把消息队列的message全部发送,不是一个一个message发送,具体看SendConnection的write方法,与之对应的接收看ReceivingConnection的read方法。3、read完了之后,调用回调函数ConnectionManager的receiveMessage方法,它又调用了handleMessage方法,handleMessage又调用了BlockManagerWorker的onBlockMessageReceive方法。传说中的事件驱动又出现了。

def processBlockMessage(blockMessage: BlockMessage): Option = {
    blockMessage.getType match {
      case BlockMessage.TYPE_PUT_BLOCK => {
      val pB = PutBlock(blockMessage.getId, blockMessage.getData, blockMessage.getLevel)
      putBlock(pB.id, pB.data, pB.level)
      None
      }
      case BlockMessage.TYPE_GET_BLOCK => {
      val gB = new GetBlock(blockMessage.getId)
      val buffer = getBlock(gB.id)
      Some(BlockMessage.fromGotBlock(GotBlock(gB.id, buffer)))
      }
      case _ => None
    }
}


根据BlockMessage的类型进行处理,put类型就保存数据,get类型就从本地把block读出来返回给它。

http://images.cnitblog.com/i/477362/201407/062317205438495.jpg
注:BlockManagerMasterActor是存在于BlockManagerMaster内部,画在外面只是因为它在通信的时候起了关键的作用的,Executor上持有的BlockManagerMasterActor均是Driver节点的Actor的引用。

广播变量
先回顾一下怎么使用广播变量:
scala> val broadcastVar = sc.broadcast(Array(1, 2, 3))
broadcastVar: spark.Broadcast] = spark.Broadcast(b5c40191-a864-4c7d-b9bf-d87e1a4e787c)

scala> broadcastVar.value
res0: Array = Array(1, 2, 3)


看了一下实现调用的是broadcastFactory的newBroadcast方法。
def newBroadcast(value_ : T, isLocal: Boolean) = {
    broadcastFactory.newBroadcast(value_, isLocal, nextBroadcastId.getAndIncrement())
}


默认的broadcastFactory是HttpBroadcastFactory,内部还有另外一个实现TorrentBroadcastFactory,先说HttpBroadcastFactory的newBroadcast方法。它直接new了一个HttpBroadcast。

HttpBroadcast.synchronized {
    SparkEnv.get.blockManager.putSingle(blockId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
}

if (!isLocal) {
    HttpBroadcast.write(id, value_)
}


它的内部做了两个操作,把数据保存到driver端的BlockManager并且写入到硬盘。TorrentBroadcast和HttpBroadcast都把数据存进了BlockManager做备份,但是TorrentBroadcast接着并没有把数据写入文件,而是采用了下面这种方式:


def sendBroadcast() {
    // 把数据给切分了,每4M一个分片
    val tInfo = TorrentBroadcast.blockifyObject(value_)
    totalBlocks = tInfo.totalBlocks
    totalBytes = tInfo.totalBytes
    hasBlocks = tInfo.totalBlocks

    // 把分片的信息存到BlockManager,并通知Master
    val metaId = BroadcastBlockId(id, "meta")
    val metaInfo = TorrentInfo(null, totalBlocks, totalBytes)
    TorrentBroadcast.synchronized {
      SparkEnv.get.blockManager.putSingle(
      metaId, metaInfo, StorageLevel.MEMORY_AND_DISK, tellMaster = true)
    }

    // 遍历所有分片,存到BlockManager上面,并通知Master
    for (i <- 0 until totalBlocks) {
      val pieceId = BroadcastBlockId(id, "piece" + i)
      TorrentBroadcast.synchronized {
      SparkEnv.get.blockManager.putSingle(
          pieceId, tInfo.arrayOfBlocks(i), StorageLevel.MEMORY_AND_DISK, tellMaster = true)
      }
    }
}


1、把数据序列化之后,每4M切分一下。2、切分完了之后,把所有分片写入BlockManager。
但是找不到它们是怎么传播的??
未完待续!

相关参数
// BlockManager的最大内存
spark.storage.memoryFraction 默认值0.6
// 文件保存的位置
spark.local.dir 默认是系统变量java.io.tmpdir的值
// tachyon保存的地址
spark.tachyonStore.url 默认值tachyon://localhost:19998
// 默认不启用netty来传输shuffle的数据
spark.shuffle.use.netty 默认值是false
spark.shuffle.sender.port 默认值是0
// 一个reduce抓取map中间结果的最大的同时抓取数量大小(to avoid over-allocating memory for receiving shuffle outputs)
spark.reducer.maxMbInFlight 默认值是48*1024*1024
// TorrentBroadcast切分数据块的分片大小
spark.broadcast.blockSize 默认是4096
// 广播变量的工厂类
spark.broadcast.factory 默认是org.apache.spark.broadcast.HttpBroadcastFactory,也可以设置为org.apache.spark.broadcast.TorrentBroadcastFactory
// 压缩格式
spark.io.compression.codec 默认是LZF,可以设置成Snappy或者Lzo




上一篇:Spark源码系列(四)图解作业生命周期
下一篇:Spark源码系列(六)Shuffle的过程解析




引用:http://www.cnblogs.com/cenyuhai/p/3808774.html
作者:岑玉海



页: [1]
查看完整版本: Spark源码系列(五)分布式缓存