Spark系列-转换与动作
问题导读1、Spark更加有效率运行的原理是什么?
2、如何理解转换、动作?
static/image/hrline/4.gif
分布式数据集支持两种操作:
转换(transformation):根据现有的数据集创建一个新的数据集
动作(actions):在数据集上运行计算后,返回一个值给驱动程序
所有Spark中的转换都是惰性的,也就是说,并不会马上发生计算。相反的,它只是记住应用到基础数据集上的这些转换(Transformation)。而这些转换(Transformation),只会在有一个动作(Action)发生,要求返回结果给驱动应用时,才真正进行计算。这个设计让Spark更加有效率的运行。例如,我们可以实现,通过map创建一个数据集,然后再用reduce,而只返回reduce的结果给driver,而不是整个大的数据集。
转换(Transformations)
TransformationMeaning
map(func)返回一个新的分布式数据集,由每个原元素经过func函数转换后组成
filter(func)返回一个新的数据集,由经过func函数后返回值为true的原元素组成
flatMap(func)类似于map,但是每一个输入元素,会被映射为0到多个输出元素(因此,func函数的返回值是一个Seq,而不是单一元素)
sample(withReplacement, frac, seed)根据给定的随机种子seed,随机抽样出数量为frac的数据
union(otherDataset)返回一个新的数据集,由原数据集和参数联合而成
groupByKey()在一个由(K,V)对组成的数据集上调用,返回一个(K,Seq)对的数据集。注意:默认情况下,使用8个并行任务进行分组,你可以传入numTask可选参数,根据数据量设置不同数目的Task(groupByKey和filter结合,可以实现类似Hadoop中的Reduce功能)
reduceByKey(func, )在一个(K,V)对的数据集上使用,返回一个(K,V)对的数据集,key相同的值,都被使用指定的reduce函数聚合到一起。和groupbykey类似,任务的个数是可以通过第二个可选参数来配置的。
join(otherDataset, )在类型为(K,V)和(K,W)类型的数据集上调用,返回一个(K,(V,W))对,每个key中的所有元素都在一起的数据集
groupWith(otherDataset, )在类型为(K,V)和(K,W)类型的数据集上调用,返回一个数据集,组成元素为(K, Seq, Seq) Tuples。这个操作在其它框架,称为CoGroup
cartesian(otherDataset)笛卡尔积。但在数据集T和U上调用时,返回一个(T,U)对的数据集,所有元素交互进行笛卡尔积。
sortByKey()在类型为( K, V )的数据集上调用,返回以K为键进行排序的(K,V)对数据集。升序或者降序由boolean型的ascendingOrder参数决定(类似于Hadoop的Map-Reduce中间阶段的Sort,按Key进行排序)
Actions(动作)
ActionMeaning
reduce(func)通过函数func聚集数据集中的所有元素。Func函数接受2个参数,返回一个值。这个函数必须是关联性的,确保可以被正确的并发执行
collect()在Driver的程序中,以数组的形式,返回数据集的所有元素。这通常会在使用filter或者其它操作后,返回一个足够小的数据子集再使用,直接将整个RDD集Collect返回,很可能会让Driver程序OOM
count()返回数据集的元素个数
take(n)返回一个数组,由数据集的前n个元素组成。注意,这个操作目前并非在多个节点上,并行执行,而是Driver程序所在机器,单机计算所有的元素(Gateway的内存压力会增大,需要谨慎使用)
first()返回数据集的第一个元素(类似于take(1))
saveAsTextFile(path)将数据集的元素,以textfile的形式,保存到本地文件系统,hdfs或者任何其它hadoop支持的文件系统。Spark将会调用每个元素的toString方法,并将它转换为文件中的一行文本
saveAsSequenceFile(path)将数据集的元素,以sequencefile的格式,保存到指定的目录下,本地系统,hdfs或者任何其它hadoop支持的文件系统。RDD的元素必须由key-value对组成,并都实现了Hadoop的Writable接口,或隐式可以转换为Writable(Spark包括了基本类型的转换,例如Int,Double,String等等)
foreach(func)在数据集的每一个元素上,运行函数func。这通常用于更新一个累加器变量,或者和外部存储系统做交互
页:
[1]