大数据分析:结合 Hadoop或 Elastic MapReduce使用 Hunk
问题导读1、你觉得,大数据分析可以结合哪些方案?
2、什么是云上的Hunk呢?
3、如何理解Elastic MapReduce结合使用Hunk?
static/image/hrline/4.gif
概要
Hunk是Splunk公司一款比较新的产品,用来对Hadoop和其它NoSQL数据存储进行探测和可视化,它的新版本将会支持亚马逊的Elastic MapReduce。
结合Hadoop使用Hunk
Hadoop由两个单元组成,首先是被称为HDFS的存储单元,HDFS可以分布在成千上万个复制的节点上。接下来是MapReduce单元,它负责跟踪和管理被命名为map-reduce jobs的作业。
之前,开发者会用到Splunk Hadoop Connect (SHC)连接器。SHC通过常用的推模型(push model)来输出数据到Hadoop中,这块处理相当地好,但相反方向的处理却可能会有问题。当通过Splunk来探测数据时,原始的数据会被吸收到Splunk Server来检索和处理。就像人们猜想的那样,这个过程并没有发挥出Hadoop计算能力的优势。
Hunk通过提供与Hadoop MapReduce节点协同工作的适配器来解决这个问题。Splunk的查询被转化成Hadoop MapReduce的作业,这些作业在Hadoop集群中处理,最终只有结果被取回到Splunk 服务器中进行分析和可视化。
通过这种方式,Hunk提供了抽象层,以便用户和开发者不需要关心怎么去写Hadoop MapReduce的作业。Hunk还能在MapReduce作业启动前就提供结果预览,以减少无用搜索的数量。
结合Elastic MapReduce使用Hunk
亚马逊的Elastic MapReduce可以看做是对Hadoop的补充,同时也是Hadoop的竞争者。EMR既可以运行在Hadoop HDFS集群上,也可以直接运行在AWS S3上。亚马逊宣称使用AWS S3的优势在于比HDFS集群更易于管理。
当运行Elastic MapReduce时,Hunk提供了相同的抽象层和预览功能,就像它在Hadoop上做的一样。所以从用户的观点来看,在Hadoop和EMR之间切换不会造成什么变化。
云上的Hunk
在云上托管Hunk的传统方法是买一个标准版的许可证,然后部署到虚拟机中,这和你现场安装一样简单。接下来是对Hunk的运行实例进行手动配置以让它对应到正确的Hadoop或AWS集群上。
这个月的新版本里,Hunk的运行实例可以在AWS上进行自动化配置,这包括自动发现EMR数据源,这样Hunk实例可以在几分钟内上线使用。为了充分利用这个优势,Hunk运行实例是按小时来计费。
虚索引(Virtual Indexes)
Hunk中的有个关键概念是“虚索引(Virtual Indexes)”。这些索引已不同原本的意义,变成只是由Hunk来体现Hadoop和EMR集群处理的一种方式。从Splunk的用户界面上看,它们像是真正的索引,即使其数据处理是在map-reduce作业中完成的。并且,由于看起来像索引,你可以在它们之上创建持久的二级索引(persistent secondary indexes)。当你要处理部分数据,然后进一步检查或在多个方面可视化时,这个持久的二级索引会非常有用。
查看英文原文:Big Data Analytics: Using Hunk with Hadoop and Elastic MapReduce
页:
[1]