1.2 Spark Mllib Logistic Regression源码分析1.2.1 LogisticRegressionWithSGD Logistic回归算法的train方法,由LogisticRegressionWithSGD类的object定义了train函数,在train函数中新建了LogisticRegressionWithSGD对象。 package org.apache.spark.mllib.classification // 1 类:LogisticRegressionWithSGD class LogisticRegressionWithSGD private[mllib] ( privatevar stepSize: Double, privatevar numIterations: Int, privatevar regParam: Double, privatevar miniBatchFraction: Double) extends GeneralizedLinearAlgorithm[LogisticRegressionModel] with Serializable { privateval gradient = new LogisticGradient() privateval updater = new SquaredL2Updater() overrideval optimizer = new GradientDescent(gradient, updater) .setStepSize(stepSize) .setNumIterations(numIterations) .setRegParam(regParam) .setMiniBatchFraction(miniBatchFraction) overrideprotectedval validators = List(DataValidators.binaryLabelValidator) /** * Construct a LogisticRegression object with default parameters: {stepSize: 1.0, * numIterations: 100, regParm: 0.01, miniBatchFraction: 1.0}. */ defthis() = this(1.0, 100, 0.01, 1.0) overrideprotected[mllib] def createModel(weights: Vector, intercept: Double) = { new LogisticRegressionModel(weights, intercept) } LogisticRegressionWithSGD类中参数说明: stepSize: 迭代步长,默认为1.0 numIterations: 迭代次数,默认为100 regParam: 正则化参数,默认值为0.0 miniBatchFraction: 每次迭代参与计算的样本比例,默认为1.0 gradient:LogisticGradient(),Logistic梯度下降; updater:SquaredL2Updater(),正则化,L2范数; optimizer:GradientDescent(gradient, updater),梯度下降最优化计算。 // 2 train方法 object LogisticRegressionWithSGD { /** * Train a logistic regression model given an RDD of (label, features) pairs. We run a fixed * number of iterations of gradient descent using the specified step size. Each iteration uses * `miniBatchFraction` fraction of the data to calculate the gradient. The weights used in * gradient descent are initialized using the initial weights provided. * NOTE: Labels used in Logistic Regression should be {0, 1} * * @param input RDD of (label, array of features) pairs. * @param numIterations Number of iterations of gradient descent to run. * @param stepSize Step size to be used for each iteration of gradient descent. * @param miniBatchFraction Fraction of data to be used per iteration. * @param initialWeights Initial set of weights to be used. Array should be equal in size to * the number of features in the data. */ def train( input: RDD[LabeledPoint], numIterations: Int, stepSize: Double, miniBatchFraction: Double, initialWeights: Vector): LogisticRegressionModel = { new LogisticRegressionWithSGD(stepSize, numIterations, 0.0, miniBatchFraction) .run(input, initialWeights) } } train参数说明: input:样本数据,分类标签lable只能是1.0和0.0两种,feature为double类型 numIterations: 迭代次数,默认为100 stepSize: 迭代步长,默认为1.0 miniBatchFraction: 每次迭代参与计算的样本比例,默认为1.0 initialWeights:初始权重,默认为0向量 run方法来自于继承父类GeneralizedLinearAlgorithm,实现方法如下。 1.2.2 GeneralizedLinearAlgorithm LogisticRegressionWithSGD中run方法的实现。 package org.apache.spark.mllib.regression /** * Run the algorithm with the configured parameters on an input RDD * of LabeledPoint entries starting from the initial weights provided. */ def run(input: RDD[LabeledPoint], initialWeights: Vector): M = { // 特征维度赋值。 if (numFeatures < 0) { numFeatures = input.map(_.features.size).first() } // 输入样本数据检测。 if (input.getStorageLevel == StorageLevel.NONE) { logWarning("The input data is not directly cached, which may hurt performance if its" + " parent RDDs are also uncached.") } // 输入样本数据检测。 // Check the data properties before running the optimizer if (validateData && !validators.forall(func => func(input))) { thrownew SparkException("Input validation failed.") } val scaler = if (useFeatureScaling) { new StandardScaler(withStd = true, withMean = false).fit(input.map(_.features)) } else { null } // 输入样本数据处理,输出data(label, features)格式。 // addIntercept:是否增加θ0常数项,若增加,则增加x0=1项。 // Prepend an extra variable consisting of all 1.0's for the intercept. // TODO: Apply feature scaling to the weight vector instead of input data. val data = if (addIntercept) { if (useFeatureScaling) { input.map(lp => (lp.label, appendBias(scaler.transform(lp.features)))).cache() } else { input.map(lp => (lp.label, appendBias(lp.features))).cache() } } else { if (useFeatureScaling) { input.map(lp => (lp.label, scaler.transform(lp.features))).cache() } else { input.map(lp => (lp.label, lp.features)) } } //初始化权重。 // addIntercept:是否增加θ0常数项,若增加,则权重增加θ0。 /** * TODO: For better convergence, in logistic regression, the intercepts should be computed * from the prior probability distribution of the outcomes; for linear regression, * the intercept should be set as the average of response. */ val initialWeightsWithIntercept = if (addIntercept && numOfLinearPredictor == 1) { appendBias(initialWeights) } else { /** If `numOfLinearPredictor > 1`, initialWeights already contains intercepts. */ initialWeights } //权重优化,进行梯度下降学习,返回最优权重。 val weightsWithIntercept = optimizer.optimize(data, initialWeightsWithIntercept) val intercept = if (addIntercept && numOfLinearPredictor == 1) { weightsWithIntercept(weightsWithIntercept.size - 1) } else { 0.0 } var weights = if (addIntercept && numOfLinearPredictor == 1) { Vectors.dense(weightsWithIntercept.toArray.slice(0, weightsWithIntercept.size - 1)) } else { weightsWithIntercept } createModel(weights, intercept) } 其中optimizer.optimize(data, initialWeightsWithIntercept)是逻辑回归实现的核心。 oprimizer的类型为GradientDescent,optimize方法中主要调用GradientDescent伴生对象的runMiniBatchSGD方法,返回当前迭代产生的最优特征权重向量。 GradientDescentd对象中optimize实现方法如下。 1.2.3 GradientDescent optimize实现方法如下。 package org.apache.spark.mllib.optimization /** * :: DeveloperApi :: * Runs gradient descent on the given training data. * @param data training data * @param initialWeights initial weights * @return solution vector */ @DeveloperApi def optimize(data: RDD[(Double, Vector)], initialWeights: Vector): Vector = { val (weights, _) = GradientDescent.runMiniBatchSGD( data, gradient, updater, stepSize, numIterations, regParam, miniBatchFraction, initialWeights) weights } } 在optimize方法中,调用了GradientDescent.runMiniBatchSGD方法,其runMiniBatchSGD实现方法如下: /** * Run stochastic gradient descent (SGD) in parallel using mini batches. * In each iteration, we sample a subset (fraction miniBatchFraction) of the total data * in order to compute a gradient estimate. * Sampling, and averaging the subgradients over this subset is performed using one standard * spark map-reduce in each iteration. * * @param data - Input data for SGD. RDD of the set of data examples, each of * the form (label, [feature values]). * @param gradient - Gradient object (used to compute the gradient of the loss function of * one single data example) * @param updater - Updater function to actually perform a gradient step in a given direction. * @param stepSize - initial step size for the first step * @param numIterations - number of iterations that SGD should be run. * @param regParam - regularization parameter * @param miniBatchFraction - fraction of the input data set that should be used for * one iteration of SGD. Default value 1.0. * * @return A tuple containing two elements. The first element is a column matrix containing * weights for every feature, and the second element is an array containing the * stochastic loss computed for every iteration. */ def runMiniBatchSGD( data: RDD[(Double, Vector)], gradient: Gradient, updater: Updater, stepSize: Double, numIterations: Int, regParam: Double, miniBatchFraction: Double, initialWeights: Vector): (Vector, Array[Double]) = { //历史迭代误差数组 val stochasticLossHistory = new ArrayBuffer[Double](numIterations) //样本数据检测,若为空,返回初始值。 val numExamples = data.count() // if no data, return initial weights to avoid NaNs if (numExamples == 0) { logWarning("GradientDescent.runMiniBatchSGD returning initial weights, no data found") return (initialWeights, stochasticLossHistory.toArray) } // miniBatchFraction值检测。 if (numExamples * miniBatchFraction < 1) { logWarning("The miniBatchFraction is too small") } // weights权重初始化。 // Initialize weights as a column vector var weights = Vectors.dense(initialWeights.toArray) val n = weights.size /** * For the first iteration, the regVal will be initialized as sum of weight squares * if it's L2 updater; for L1 updater, the same logic is followed. */ var regVal = updater.compute( weights, Vectors.dense(new Array[Double](weights.size)), 0, 1, regParam)._2 // weights权重迭代计算。 for (i <- 1 to numIterations) { val bcWeights = data.context.broadcast(weights) // Sample a subset (fraction miniBatchFraction) of the total data // compute and sum up the subgradients on this subset (this is one map-reduce) // 采用treeAggregate的RDD方法,进行聚合计算,计算每个样本的权重向量、误差值,然后对所有样本权重向量及误差值进行累加。 // sample是根据miniBatchFraction指定的比例随机采样相应数量的样本 。 val (gradientSum, lossSum, miniBatchSize) = data.sample(false, miniBatchFraction, 42 + i) .treeAggregate((BDV.zeros[Double](n), 0.0, 0L))( seqOp = (c, v) => { // c: (grad, loss, count), v: (label, features) val l = gradient.compute(v._2, v._1, bcWeights.value, Vectors.fromBreeze(c._1)) (c._1, c._2 + l, c._3 + 1) }, combOp = (c1, c2) => { // c: (grad, loss, count) (c1._1 += c2._1, c1._2 + c2._2, c1._3 + c2._3) }) // 保存本次迭代误差值,以及更新weights权重向量。 if (miniBatchSize > 0) { /** * NOTE(Xinghao): lossSum is computed using the weights from the previous iteration * and regVal is the regularization value computed in the previous iteration as well. */ // updater.compute更新weights矩阵和regVal(正则化项)。根据本轮迭代中的gradient和loss的变化以及正则化项计算更新之后的weights和regVal。 stochasticLossHistory.append(lossSum / miniBatchSize + regVal) val update = updater.compute( weights, Vectors.fromBreeze(gradientSum / miniBatchSize.toDouble), stepSize, i, regParam) weights = update._1 regVal = update._2 } else { logWarning(s"Iteration ($i/$numIterations). The size of sampled batch is zero") } } logInfo("GradientDescent.runMiniBatchSGD finished. Last 10 stochastic losses %s".format( stochasticLossHistory.takeRight(10).mkString(", "))) (weights, stochasticLossHistory.toArray) } runMiniBatchSGD的输入、输出参数说明: data 样本输入数据,格式 (label, [feature values]) gradient 梯度对象,用于对每个样本计算梯度及误差 updater 权重更新对象,用于每次更新权重 stepSize 初始步长 numIterations 迭代次数 regParam 正则化参数 miniBatchFraction 迭代因子,每次迭代参与计算的样本比例 返回结果(Vector, Array[Double]),第一个为权重,每二个为每次迭代的误差值。 在MiniBatchSGD中主要实现对输入数据集进行迭代抽样,通过使用LogisticGradient作为梯度下降算法,使用SquaredL2Updater作为更新算法,不断对抽样数据集进行迭代计算从而找出最优的特征权重向量解。在LinearRegressionWithSGD中定义如下: privateval gradient = new LogisticGradient() privateval updater = new SquaredL2Updater() overrideval optimizer = new GradientDescent(gradient, updater) .setStepSize(stepSize) .setNumIterations(numIterations) .setRegParam(regParam) .setMiniBatchFraction(miniBatchFraction) runMiniBatchSGD方法中调用了gradient.compute、updater.compute两个方法,其实现方法如下。 1.2.4 gradient & updater 1)gradient //计算当前计算对象的类标签与实际类标签值之差 //计算当前平方梯度下降值 //计算权重的更新值 //返回当前训练对象的特征权重向量和误差 class LogisticGradient(numClasses: Int) extends Gradient { defthis() = this(2) overridedef compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = { val gradient = Vectors.zeros(weights.size) val loss = compute(data, label, weights, gradient) (gradient, loss) } overridedef compute( data: Vector, label: Double, weights: Vector, cumGradient: Vector): Double = { val dataSize = data.size // (weights.size / dataSize + 1) is number of classes require(weights.size % dataSize == 0 && numClasses == weights.size / dataSize + 1) numClasses match { case2 => /** * For Binary Logistic Regression. * * Although the loss and gradient calculation for multinomial one is more generalized, * and multinomial one can also be used in binary case, we still implement a specialized * binary version for performance reason. */ val margin = -1.0 * dot(data, weights) val multiplier = (1.0 / (1.0 + math.exp(margin))) - label axpy(multiplier, data, cumGradient) if (label > 0) { // The following is equivalent to log(1 + exp(margin)) but more numerically stable. MLUtils.log1pExp(margin) } else { MLUtils.log1pExp(margin) - margin } case _ => /** * For Multinomial Logistic Regression. */ val weightsArray = weights match { case dv: DenseVector => dv.values case _ => thrownew IllegalArgumentException( s"weights only supports dense vector but got type ${weights.getClass}.") } val cumGradientArray = cumGradient match { case dv: DenseVector => dv.values case _ => thrownew IllegalArgumentException( s"cumGradient only supports dense vector but got type ${cumGradient.getClass}.") } // marginY is margins(label - 1) in the formula. var marginY = 0.0 var maxMargin = Double.NegativeInfinity var maxMarginIndex = 0 val margins = Array.tabulate(numClasses - 1) { i => var margin = 0.0 data.foreachActive { (index, value) => if (value != 0.0) margin += value * weightsArray((i * dataSize) + index) } if (i == label.toInt - 1) marginY = margin if (margin > maxMargin) { maxMargin = margin maxMarginIndex = i } margin } /** * When maxMargin > 0, the original formula will cause overflow as we discuss * in the previous comment. * We address this by subtracting maxMargin from all the margins, so it's guaranteed * that all of the new margins will be smaller than zero to prevent arithmetic overflow. */ val sum = { var temp = 0.0 if (maxMargin > 0) { for (i <- 0 until numClasses - 1) { margins(i) -= maxMargin if (i == maxMarginIndex) { temp += math.exp(-maxMargin) } else { temp += math.exp(margins(i)) } } } else { for (i <- 0 until numClasses - 1) { temp += math.exp(margins(i)) } } temp } for (i <- 0 until numClasses - 1) { val multiplier = math.exp(margins(i)) / (sum + 1.0) - { if (label != 0.0 && label == i + 1) 1.0else0.0 } data.foreachActive { (index, value) => if (value != 0.0) cumGradientArray(i * dataSize + index) += multiplier * value } } val loss = if (label > 0.0) math.log1p(sum) - marginY else math.log1p(sum) if (maxMargin > 0) { loss + maxMargin } else { loss } } } } 2)updater //weihtsOld:上一次迭代计算后的特征权重向量 //gradient:本次迭代计算的特征权重向量 //stepSize:迭代步长 //iter:当前迭代次数 //regParam:正则参数 //以当前迭代次数的平方根的倒数作为本次迭代趋近(下降)的因子 //返回本次剃度下降后更新的特征权重向量 //使用了L2 regularization(R(w) = 1/2 ||w||^2),weights更新规则为: |
/** * :: DeveloperApi :: * Updater for L2 regularized problems. * R(w) = 1/2 ||w||^2 * Uses a step-size decreasing with the square root of the number of iterations. */ @DeveloperApi class SquaredL2Updater extends Updater { overridedef compute( weightsOld: Vector, gradient: Vector, stepSize: Double, iter: Int, regParam: Double): (Vector, Double) = { // add up both updates from the gradient of the loss (= step) as well as // the gradient of the regularizer (= regParam * weightsOld) // w' = w - thisIterStepSize * (gradient + regParam * w) // w' = (1 - thisIterStepSize * regParam) * w - thisIterStepSize * gradient val thisIterStepSize = stepSize / math.sqrt(iter) val brzWeights: BV[Double] = weightsOld.toBreeze.toDenseVector brzWeights :*= (1.0 - thisIterStepSize * regParam) brzAxpy(-thisIterStepSize, gradient.toBreeze, brzWeights) val norm = brzNorm(brzWeights, 2.0) (Vectors.fromBreeze(brzWeights), 0.5 * regParam * norm * norm) } } 1.3 Mllib Logistic Regression实例 1、数据 数据格式为:标签, 特征1 特征2 特征3…… 0 128:51 129:159 130:253 131:159 132:50 155:48 156:238 157:252 158:252 159:252 160:237 182:54 183:227 184:253 185:252 186:239 187:233 188:252 189:57 190:6 208:10 209:60 210:224 211:252 212:253 213:252 214:202 215:84 216:252 217:253 218:122 236:163 237:252 238:252 239:252 240:253 241:252 242:252 243:96 244:189 245:253 246:167 263:51 264:238 265:253 266:253 267:190 268:114 269:253 270:228 271:47 272:79 273:255 274:168 290:48 291:238 292:252 293:252 294:179 295:12 296:75 297:121 298:21 301:253 302:243 303:50 317:38 318:165 319:253 320:233 321:208 322:84 329:253 330:252 331:165 344:7 345:178 346:252 347:240 348:71 349:19 350:28 357:253 358:252 359:195 372:57 373:252 374:252 375:63 385:253 386:252 387:195 400:198 401:253 402:190 413:255 414:253 415:196 427:76 428:246 429:252 430:112 441:253 442:252 443:148 455:85 456:252 457:230 458:25 467:7 468:135 469:253 470:186 471:12 483:85 484:252 485:223 494:7 495:131 496:252 497:225 498:71 511:85 512:252 513:145 521:48 522:165 523:252 524:173 539:86 540:253 541:225 548:114 549:238 550:253 551:162 567:85 568:252 569:249 570:146 571:48 572:29 573:85 574:178 575:225 576:253 577:223 578:167 579:56 595:85 596:252 597:252 598:252 599:229 600:215 601:252 602:252 603:252 604:196 605:130 623:28 624:199 625:252 626:252 627:253 628:252 629:252 630:233 631:145 652:25 653:128 654:252 655:253 656:252 657:141 658:37 1 159:124 160:253 161:255 162:63 186:96 187:244 188:251 189:253 190:62 214:127 215:251 216:251 217:253 218:62 241:68 242:236 243:251 244:211 245:31 246:8 268:60 269:228 270:251 271:251 272:94 296:155 297:253 298:253 299:189 323:20 324:253 325:251 326:235 327:66 350:32 351:205 352:253 353:251 354:126 378:104 379:251 380:253 381:184 382:15 405:80 406:240 407:251 408:193 409:23 432:32 433:253 434:253 435:253 436:159 460:151 461:251 462:251 463:251 464:39 487:48 488:221 489:251 490:251 491:172 515:234 516:251 517:251 518:196 519:12 543:253 544:251 545:251 546:89 570:159 571:255 572:253 573:253 574:31 597:48 598:228 599:253 600:247 601:140 602:8 625:64 626:251 627:253 628:220 653:64 654:251 655:253 656:220 681:24 682:193 683:253 684:220 …… 2、代码 //1 读取样本数据 valdata_path = "/user/tmp/sample_libsvm_data.txt" valexamples = MLUtils.loadLibSVMFile(sc, data_path).cache() //2 样本数据划分训练样本与测试样本 valsplits = examples.randomSplit(Array(0.6, 0.4), seed = 11L) valtraining = splits(0).cache() valtest = splits(1) valnumTraining = training.count() valnumTest = test.count() println(s"Training: $numTraining, test: $numTest.") //3 新建逻辑回归模型,并设置训练参数 valnumIterations = 1000 valstepSize = 1 valminiBatchFraction = 1.0 valmodel = LogisticRegressionWithSGD.train(training, numIterations, stepSize, miniBatchFraction) //4 对测试样本进行测试 valprediction = model.predict(test.map(_.features)) valpredictionAndLabel = prediction.zip(test.map(_.label)) //5 计算测试误差 valmetrics = new MulticlassMetrics(predictionAndLabel) valprecision = metrics.precision println("Precision = " + precision) 来自: http://www.sjsjw.com/107/001018MYM008515/ |