立即注册 登录
About云-梭伦科技 返回首页

goldtimes的个人空间 https://aboutyun.com/?1402 [收藏] [复制] [分享] [RSS]

日志

SparkMLlibLogisticRegression实现逻辑回归算法

已有 5933 次阅读2016-5-9 19:37




1.2 Spark Mllib Logistic Regression源码分析1.2.1 LogisticRegressionWithSGD
Logistic回归算法的train方法,由LogisticRegressionWithSGD类的object定义了train函数,在train函数中新建了LogisticRegressionWithSGD对象。 
package org.apache.spark.mllib.classification 
// 1 类:LogisticRegressionWithSGD 
class LogisticRegressionWithSGD private[mllib] ( 
    privatevar stepSize: Double, 
    privatevar numIterations: Int, 
    privatevar regParam: Double, 
    privatevar miniBatchFraction: Double) 
  extends GeneralizedLinearAlgorithm[LogisticRegressionModel] with Serializable { 
  
  privateval gradient = new LogisticGradient() 
  privateval updater = new SquaredL2Updater() 
  overrideval optimizer = new GradientDescent(gradient, updater) 
    .setStepSize(stepSize) 
    .setNumIterations(numIterations) 
    .setRegParam(regParam) 
    .setMiniBatchFraction(miniBatchFraction) 
  overrideprotectedval validators = List(DataValidators.binaryLabelValidator) 
  
  /** 
   * Construct a LogisticRegression object with default parameters: {stepSize: 1.0, 
   * numIterations: 100, regParm: 0.01, miniBatchFraction: 1.0}. 
   */ 
  defthis() = this(1.0, 100, 0.01, 1.0) 
  
  overrideprotected[mllib] def createModel(weights: Vector, intercept: Double) = { 
    new LogisticRegressionModel(weights, intercept) 
 } 
LogisticRegressionWithSGD类中参数说明: 
stepSize: 迭代步长,默认为1.0 
numIterations: 迭代次数,默认为100 
regParam: 正则化参数,默认值为0.0 
miniBatchFraction: 每次迭代参与计算的样本比例,默认为1.0 
gradient:LogisticGradient(),Logistic梯度下降; 
updater:SquaredL2Updater(),正则化,L2范数; 
optimizer:GradientDescent(gradient, updater),梯度下降最优化计算。 
// 2 train方法 
object LogisticRegressionWithSGD { 
  /** 
   * Train a logistic regression model given an RDD of (label, features) pairs. We run a fixed 
   * number of iterations of gradient descent using the specified step size. Each iteration uses 
   * `miniBatchFraction` fraction of the data to calculate the gradient. The weights used in 
   * gradient descent are initialized using the initial weights provided. 
   * NOTE: Labels used in Logistic Regression should be {0, 1} 
   * 
   * @param input RDD of (label, array of features) pairs. 
   * @param numIterations Number of iterations of gradient descent to run. 
   * @param stepSize Step size to be used for each iteration of gradient descent. 
   * @param miniBatchFraction Fraction of data to be used per iteration. 
   * @param initialWeights Initial set of weights to be used. Array should be equal in size to 
   *        the number of features in the data. 
   */ 
  def train( 
      input: RDD[LabeledPoint], 
      numIterations: Int, 
      stepSize: Double, 
      miniBatchFraction: Double, 
      initialWeights: Vector): LogisticRegressionModel = { 
    new LogisticRegressionWithSGD(stepSize, numIterations, 0.0, miniBatchFraction) 
      .run(input, initialWeights) 
  } 

train参数说明: 
input:样本数据,分类标签lable只能是1.0和0.0两种,feature为double类型 
numIterations: 迭代次数,默认为100 
stepSize: 迭代步长,默认为1.0 
miniBatchFraction: 每次迭代参与计算的样本比例,默认为1.0 
initialWeights:初始权重,默认为0向量 
run方法来自于继承父类GeneralizedLinearAlgorithm,实现方法如下。
1.2.2 GeneralizedLinearAlgorithm
LogisticRegressionWithSGD中run方法的实现。 
package org.apache.spark.mllib.regression 
/** 
   * Run the algorithm with the configured parameters on an input RDD 
   * of LabeledPoint entries starting from the initial weights provided. 
   */ 
  def run(input: RDD[LabeledPoint], initialWeights: Vector): M = { 
// 特征维度赋值。 
    if (numFeatures < 0) { 
      numFeatures = input.map(_.features.size).first() 
    } 
// 输入样本数据检测。 
    if (input.getStorageLevel == StorageLevel.NONE) { 
      logWarning("The input data is not directly cached, which may hurt performance if its" 
        + " parent RDDs are also uncached.") 
    } 
// 输入样本数据检测。 
    // Check the data properties before running the optimizer 
    if (validateData && !validators.forall(func => func(input))) { 
      thrownew SparkException("Input validation failed.") 
    } 
val scaler = if (useFeatureScaling) { 
      new StandardScaler(withStd = true, withMean = false).fit(input.map(_.features)) 
    } else { 
      null 
    } 
// 输入样本数据处理,输出data(label, features)格式。 
// addIntercept:是否增加θ0常数项,若增加,则增加x0=1项。 
    // Prepend an extra variable consisting of all 1.0's for the intercept. 
    // TODO: Apply feature scaling to the weight vector instead of input data. 
    val data = 
      if (addIntercept) { 
        if (useFeatureScaling) { 
          input.map(lp => (lp.label, appendBias(scaler.transform(lp.features)))).cache() 
        } else { 
          input.map(lp => (lp.label, appendBias(lp.features))).cache() 
        } 
      } else { 
        if (useFeatureScaling) { 
          input.map(lp => (lp.label, scaler.transform(lp.features))).cache() 
        } else { 
          input.map(lp => (lp.label, lp.features)) 
        } 
      } 
//初始化权重。 
// addIntercept:是否增加θ0常数项,若增加,则权重增加θ0。 
    /** 
     * TODO: For better convergence, in logistic regression, the intercepts should be computed 
     * from the prior probability distribution of the outcomes; for linear regression, 
     * the intercept should be set as the average of response. 
     */ 
    val initialWeightsWithIntercept = if (addIntercept && numOfLinearPredictor == 1) { 
      appendBias(initialWeights) 
    } else { 
      /** If `numOfLinearPredictor > 1`, initialWeights already contains intercepts. */ 
      initialWeights 
    } 
//权重优化,进行梯度下降学习,返回最优权重。 
    val weightsWithIntercept = optimizer.optimize(data, initialWeightsWithIntercept) 
  
    val intercept = if (addIntercept && numOfLinearPredictor == 1) { 
      weightsWithIntercept(weightsWithIntercept.size - 1) 
    } else { 
      0.0 
    } 
  
    var weights = if (addIntercept && numOfLinearPredictor == 1) { 
      Vectors.dense(weightsWithIntercept.toArray.slice(0, weightsWithIntercept.size - 1)) 
    } else { 
      weightsWithIntercept 
    } 
  
    createModel(weights, intercept) 

其中optimizer.optimize(data, initialWeightsWithIntercept)是逻辑回归实现的核心。 
oprimizer的类型为GradientDescent,optimize方法中主要调用GradientDescent伴生对象的runMiniBatchSGD方法,返回当前迭代产生的最优特征权重向量。 
GradientDescentd对象中optimize实现方法如下。
1.2.3 GradientDescent
optimize实现方法如下。 
package org.apache.spark.mllib.optimization 
/** 
   * :: DeveloperApi :: 
   * Runs gradient descent on the given training data. 
   * @param data training data 
   * @param initialWeights initial weights 
   * @return solution vector 
   */ 
  @DeveloperApi 
  def optimize(data: RDD[(Double, Vector)], initialWeights: Vector): Vector = { 
    val (weights, _) = GradientDescent.runMiniBatchSGD( 
      data, 
      gradient, 
      updater, 
      stepSize, 
      numIterations, 
      regParam, 
      miniBatchFraction, 
      initialWeights) 
    weights 
  } 
  

在optimize方法中,调用了GradientDescent.runMiniBatchSGD方法,其runMiniBatchSGD实现方法如下: 
/** 
   * Run stochastic gradient descent (SGD) in parallel using mini batches. 
   * In each iteration, we sample a subset (fraction miniBatchFraction) of the total data 
   * in order to compute a gradient estimate. 
   * Sampling, and averaging the subgradients over this subset is performed using one standard 
   * spark map-reduce in each iteration. 
   * 
   * @param data - Input data for SGD. RDD of the set of data examples, each of 
   *               the form (label, [feature values]). 
   * @param gradient - Gradient object (used to compute the gradient of the loss function of 
   *                   one single data example) 
   * @param updater - Updater function to actually perform a gradient step in a given direction. 
   * @param stepSize - initial step size for the first step 
   * @param numIterations - number of iterations that SGD should be run. 
   * @param regParam - regularization parameter 
   * @param miniBatchFraction - fraction of the input data set that should be used for 
   *                            one iteration of SGD. Default value 1.0. 
   * 
   * @return A tuple containing two elements. The first element is a column matrix containing 
   *         weights for every feature, and the second element is an array containing the 
   *         stochastic loss computed for every iteration. 
   */ 
  def runMiniBatchSGD( 
      data: RDD[(Double, Vector)], 
      gradient: Gradient, 
      updater: Updater, 
      stepSize: Double, 
      numIterations: Int, 
      regParam: Double, 
      miniBatchFraction: Double, 
      initialWeights: Vector): (Vector, Array[Double]) = { 
//历史迭代误差数组 
    val stochasticLossHistory = new ArrayBuffer[Double](numIterations) 
//样本数据检测,若为空,返回初始值。 
    val numExamples = data.count() 
  
    // if no data, return initial weights to avoid NaNs 
    if (numExamples == 0) { 
      logWarning("GradientDescent.runMiniBatchSGD returning initial weights, no data found") 
      return (initialWeights, stochasticLossHistory.toArray) 
    } 
// miniBatchFraction值检测。 
    if (numExamples * miniBatchFraction < 1) { 
      logWarning("The miniBatchFraction is too small") 
    } 
// weights权重初始化。 
    // Initialize weights as a column vector 
    var weights = Vectors.dense(initialWeights.toArray) 
    val n = weights.size 
  
    /** 
     * For the first iteration, the regVal will be initialized as sum of weight squares 
     * if it's L2 updater; for L1 updater, the same logic is followed. 
     */ 
    var regVal = updater.compute( 
      weights, Vectors.dense(new Array[Double](weights.size)), 0, 1, regParam)._2 
// weights权重迭代计算。 
    for (i <- 1 to numIterations) { 
      val bcWeights = data.context.broadcast(weights) 
      // Sample a subset (fraction miniBatchFraction) of the total data 
      // compute and sum up the subgradients on this subset (this is one map-reduce) 
// 采用treeAggregate的RDD方法,进行聚合计算,计算每个样本的权重向量、误差值,然后对所有样本权重向量及误差值进行累加。 
// sample是根据miniBatchFraction指定的比例随机采样相应数量的样本 。 
      val (gradientSum, lossSum, miniBatchSize) = data.sample(false, miniBatchFraction, 42 + i) 
        .treeAggregate((BDV.zeros[Double](n), 0.0, 0L))( 
          seqOp = (c, v) => { 
            // c: (grad, loss, count), v: (label, features) 
            val l = gradient.compute(v._2, v._1, bcWeights.value, Vectors.fromBreeze(c._1)) 
            (c._1, c._2 + l, c._3 + 1) 
          }, 
          combOp = (c1, c2) => { 
            // c: (grad, loss, count) 
            (c1._1 += c2._1, c1._2 + c2._2, c1._3 + c2._3) 
          }) 
// 保存本次迭代误差值,以及更新weights权重向量。 
      if (miniBatchSize > 0) { 
        /** 
         * NOTE(Xinghao): lossSum is computed using the weights from the previous iteration 
         * and regVal is the regularization value computed in the previous iteration as well. 
         */ 
// updater.compute更新weights矩阵和regVal(正则化项)。根据本轮迭代中的gradient和loss的变化以及正则化项计算更新之后的weights和regVal。  
        stochasticLossHistory.append(lossSum / miniBatchSize + regVal) 
        val update = updater.compute( 
          weights, Vectors.fromBreeze(gradientSum / miniBatchSize.toDouble), stepSize, i, regParam) 
        weights = update._1 
        regVal = update._2 
      } else { 
        logWarning(s"Iteration ($i/$numIterations). The size of sampled batch is zero") 
      } 
    } 
  
    logInfo("GradientDescent.runMiniBatchSGD finished. Last 10 stochastic losses %s".format( 
      stochasticLossHistory.takeRight(10).mkString(", "))) 
  
    (weights, stochasticLossHistory.toArray) 
  
  } 
runMiniBatchSGD的输入、输出参数说明: 
data 样本输入数据,格式 (label, [feature values]) 
gradient 梯度对象,用于对每个样本计算梯度及误差 
updater 权重更新对象,用于每次更新权重 
stepSize 初始步长 
numIterations 迭代次数 
regParam 正则化参数 
miniBatchFraction 迭代因子,每次迭代参与计算的样本比例 
返回结果(Vector, Array[Double]),第一个为权重,每二个为每次迭代的误差值。 
在MiniBatchSGD中主要实现对输入数据集进行迭代抽样,通过使用LogisticGradient作为梯度下降算法,使用SquaredL2Updater作为更新算法,不断对抽样数据集进行迭代计算从而找出最优的特征权重向量解。在LinearRegressionWithSGD中定义如下: 
  privateval gradient = new LogisticGradient() 
  privateval updater = new SquaredL2Updater() 
  overrideval optimizer = new GradientDescent(gradient, updater) 
    .setStepSize(stepSize) 
    .setNumIterations(numIterations) 
    .setRegParam(regParam) 
    .setMiniBatchFraction(miniBatchFraction) 
runMiniBatchSGD方法中调用了gradient.compute、updater.compute两个方法,其实现方法如下。
1.2.4 gradient & updater
1)gradient 
//计算当前计算对象的类标签与实际类标签值之差  
//计算当前平方梯度下降值 
//计算权重的更新值 
//返回当前训练对象的特征权重向量和误差 
class LogisticGradient(numClasses: Int) extends Gradient { 
  
  defthis() = this(2) 
  
  overridedef compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = { 
    val gradient = Vectors.zeros(weights.size) 
    val loss = compute(data, label, weights, gradient) 
    (gradient, loss) 
  } 
  
  overridedef compute( 
      data: Vector, 
      label: Double, 
      weights: Vector, 
      cumGradient: Vector): Double = { 
    val dataSize = data.size 
  
    // (weights.size / dataSize + 1) is number of classes 
    require(weights.size % dataSize == 0 && numClasses == weights.size / dataSize + 1) 
    numClasses match { 
      case2 => 
        /** 
         * For Binary Logistic Regression. 
         * 
         * Although the loss and gradient calculation for multinomial one is more generalized, 
         * and multinomial one can also be used in binary case, we still implement a specialized 
         * binary version for performance reason. 
         */ 
        val margin = -1.0 * dot(data, weights) 
        val multiplier = (1.0 / (1.0 + math.exp(margin))) - label 
        axpy(multiplier, data, cumGradient) 
        if (label > 0) { 
          // The following is equivalent to log(1 + exp(margin)) but more numerically stable. 
          MLUtils.log1pExp(margin) 
        } else { 
          MLUtils.log1pExp(margin) - margin 
        } 
      case _ => 
        /** 
         * For Multinomial Logistic Regression. 
         */ 
        val weightsArray = weights match { 
          case dv: DenseVector => dv.values 
          case _ => 
            thrownew IllegalArgumentException( 
              s"weights only supports dense vector but got type ${weights.getClass}.") 
        } 
        val cumGradientArray = cumGradient match { 
          case dv: DenseVector => dv.values 
          case _ => 
            thrownew IllegalArgumentException( 
              s"cumGradient only supports dense vector but got type ${cumGradient.getClass}.") 
        } 
  
        // marginY is margins(label - 1) in the formula. 
        var marginY = 0.0 
        var maxMargin = Double.NegativeInfinity 
        var maxMarginIndex = 0 
  
        val margins = Array.tabulate(numClasses - 1) { i => 
          var margin = 0.0 
          data.foreachActive { (index, value) => 
            if (value != 0.0) margin += value * weightsArray((i * dataSize) + index) 
          } 
          if (i == label.toInt - 1) marginY = margin 
          if (margin > maxMargin) { 
            maxMargin = margin 
            maxMarginIndex = i 
          } 
          margin 
        } 
  
        /** 
         * When maxMargin > 0, the original formula will cause overflow as we discuss 
         * in the previous comment. 
         * We address this by subtracting maxMargin from all the margins, so it's guaranteed 
         * that all of the new margins will be smaller than zero to prevent arithmetic overflow. 
         */ 
        val sum = { 
          var temp = 0.0 
          if (maxMargin > 0) { 
            for (i <- 0 until numClasses - 1) { 
              margins(i) -= maxMargin 
              if (i == maxMarginIndex) { 
                temp += math.exp(-maxMargin) 
              } else { 
                temp += math.exp(margins(i)) 
              } 
            } 
          } else { 
            for (i <- 0 until numClasses - 1) { 
              temp += math.exp(margins(i)) 
            } 
          } 
          temp 
        } 
  
        for (i <- 0 until numClasses - 1) { 
          val multiplier = math.exp(margins(i)) / (sum + 1.0) - { 
            if (label != 0.0 && label == i + 1) 1.0else0.0 
          } 
          data.foreachActive { (index, value) => 
            if (value != 0.0) cumGradientArray(i * dataSize + index) += multiplier * value 
          } 
        } 
  
        val loss = if (label > 0.0) math.log1p(sum) - marginY else math.log1p(sum) 
  
        if (maxMargin > 0) { 
          loss + maxMargin 
        } else { 
          loss 
        } 
    } 
  } 

2)updater 
//weihtsOld:上一次迭代计算后的特征权重向量 
//gradient:本次迭代计算的特征权重向量 
//stepSize:迭代步长 
//iter:当前迭代次数 
//regParam:正则参数  
//以当前迭代次数的平方根的倒数作为本次迭代趋近(下降)的因子   
//返回本次剃度下降后更新的特征权重向量   
//使用了L2 regularization(R(w) = 1/2 ||w||^2),weights更新规则为: 

 

/** 
 * :: DeveloperApi :: 
 * Updater for L2 regularized problems. 
 *          R(w) = 1/2 ||w||^2 
 * Uses a step-size decreasing with the square root of the number of iterations. 
 */ 
@DeveloperApi 
class SquaredL2Updater extends Updater { 
  overridedef compute( 
      weightsOld: Vector, 
      gradient: Vector, 
      stepSize: Double, 
      iter: Int, 
      regParam: Double): (Vector, Double) = { 
    // add up both updates from the gradient of the loss (= step) as well as 
    // the gradient of the regularizer (= regParam * weightsOld) 
    // w' = w - thisIterStepSize * (gradient + regParam * w) 
    // w' = (1 - thisIterStepSize * regParam) * w - thisIterStepSize * gradient 
    val thisIterStepSize = stepSize / math.sqrt(iter) 
    val brzWeights: BV[Double] = weightsOld.toBreeze.toDenseVector 
    brzWeights :*= (1.0 - thisIterStepSize * regParam) 
    brzAxpy(-thisIterStepSize, gradient.toBreeze, brzWeights) 
    val norm = brzNorm(brzWeights, 2.0) 
  
    (Vectors.fromBreeze(brzWeights), 0.5 * regParam * norm * norm) 
  } 

 
1.3 Mllib Logistic Regression实例
1、数据 
数据格式为:标签, 特征1 特征2 特征3…… 
0 128:51 129:159 130:253 131:159 132:50 155:48 156:238 157:252 158:252 159:252 160:237 182:54 183:227 184:253 185:252 186:239 187:233 188:252 189:57 190:6 208:10 209:60 210:224 211:252 212:253 213:252 214:202 215:84 216:252 217:253 218:122 236:163 237:252 238:252 239:252 240:253 241:252 242:252 243:96 244:189 245:253 246:167 263:51 264:238 265:253 266:253 267:190 268:114 269:253 270:228 271:47 272:79 273:255 274:168 290:48 291:238 292:252 293:252 294:179 295:12 296:75 297:121 298:21 301:253 302:243 303:50 317:38 318:165 319:253 320:233 321:208 322:84 329:253 330:252 331:165 344:7 345:178 346:252 347:240 348:71 349:19 350:28 357:253 358:252 359:195 372:57 373:252 374:252 375:63 385:253 386:252 387:195 400:198 401:253 402:190 413:255 414:253 415:196 427:76 428:246 429:252 430:112 441:253 442:252 443:148 455:85 456:252 457:230 458:25 467:7 468:135 469:253 470:186 471:12 483:85 484:252 485:223 494:7 495:131 496:252 497:225 498:71 511:85 512:252 513:145 521:48 522:165 523:252 524:173 539:86 540:253 541:225 548:114 549:238 550:253 551:162 567:85 568:252 569:249 570:146 571:48 572:29 573:85 574:178 575:225 576:253 577:223 578:167 579:56 595:85 596:252 597:252 598:252 599:229 600:215 601:252 602:252 603:252 604:196 605:130 623:28 624:199 625:252 626:252 627:253 628:252 629:252 630:233 631:145 652:25 653:128 654:252 655:253 656:252 657:141 658:37 
1 159:124 160:253 161:255 162:63 186:96 187:244 188:251 189:253 190:62 214:127 215:251 216:251 217:253 218:62 241:68 242:236 243:251 244:211 245:31 246:8 268:60 269:228 270:251 271:251 272:94 296:155 297:253 298:253 299:189 323:20 324:253 325:251 326:235 327:66 350:32 351:205 352:253 353:251 354:126 378:104 379:251 380:253 381:184 382:15 405:80 406:240 407:251 408:193 409:23 432:32 433:253 434:253 435:253 436:159 460:151 461:251 462:251 463:251 464:39 487:48 488:221 489:251 490:251 491:172 515:234 516:251 517:251 518:196 519:12 543:253 544:251 545:251 546:89 570:159 571:255 572:253 573:253 574:31 597:48 598:228 599:253 600:247 601:140 602:8 625:64 626:251 627:253 628:220 653:64 654:251 655:253 656:220 681:24 682:193 683:253 684:220 
……  
2、代码 
//1 读取样本数据 
  valdata_path = "/user/tmp/sample_libsvm_data.txt" 
  valexamples = MLUtils.loadLibSVMFile(sc, data_path).cache() 
  
  //2 样本数据划分训练样本与测试样本 
  valsplits = examples.randomSplit(Array(0.6, 0.4), seed = 11L) 
  valtraining = splits(0).cache() 
  valtest = splits(1) 
  valnumTraining = training.count() 
  valnumTest = test.count() 
  println(s"Training: $numTraining, test: $numTest.") 
  
  //3 新建逻辑回归模型,并设置训练参数 
  valnumIterations = 1000 
  valstepSize = 1 
  valminiBatchFraction = 1.0 
  valmodel = LogisticRegressionWithSGD.train(training, numIterations, stepSize, miniBatchFraction) 
  //4 对测试样本进行测试 
  valprediction = model.predict(test.map(_.features)) 
  valpredictionAndLabel = prediction.zip(test.map(_.label)) 
  
  //5 计算测试误差 
  valmetrics = new MulticlassMetrics(predictionAndLabel) 
  valprecision = metrics.precision 
  println("Precision = " + precision) 


来自:
http://www.sjsjw.com/107/001018MYM008515/


路过

雷人

握手

鲜花

鸡蛋

评论 (0 个评论)

facelist doodle 涂鸦板

您需要登录后才可以评论 登录 | 立即注册

关闭

推荐上一条 /2 下一条