立即注册 登录
About云-梭伦科技 返回首页

mituan2008的个人空间 https://aboutyun.com/?1420 [收藏] [复制] [分享] [RSS]

日志

spark的kafka的低阶API createDirectStream的总结。

已有 2338 次阅读2015-9-15 22:00

大家都知道在spark1.3版本后,kafkautil里面提供了两个创建dstream的方法,一个是老版本中有的createStream方法,还有一个是后面新加的createDirectStream方法。关于这两个方法的优缺点,官方已经说的很详细(http://spark.apache.org/docs/latest/streaming-kafka-integration.html),总之就是createDirectStream性能会更好一点,通过新方法创建出来的dstream的rdd partition和kafka的topic的partition是一一对应的,通过低阶API直接从kafka的topic消费消息,但是它不再往zookeeper中更新consumer offsets,使得基于zk的consumer offsets的监控工具都会失效。

官方只是蜻蜓点水般的说了一下可以在foreachRDD中更新zookeeper上的offsets:
directKafkaStream.foreachRDD { rdd => 
     val offsetRanges = rdd.asInstanceOf[HasOffsetRanges]
     // offsetRanges.length = # of Kafka partitions being consumed
     ...
 }
对应Exactly-once semantics要自己去实现了,大致的实现思路就是在driver启动的时候先从zk上获得consumer offsets信息,createDirectStream有两个重载方法,其中一个可以设置从任意offsets位置开始消费,部分代码如下:

def createDirectStream(implicit streamingConfig: StreamingConfig, kc: KafkaCluster) = {

      val extractors = streamingConfig.getExtractors()
      //从zookeeper上读取offset开始消费message
      val messages = {
        val kafkaPartitionsE = kc.getPartitions(streamingConfig.topicSet)
        if (kafkaPartitionsE.isLeft) throw new SparkException("get kafka partition failed:")
        val kafkaPartitions = kafkaPartitionsE.right.get
        val consumerOffsetsE = kc.getConsumerOffsets(streamingConfig.group, kafkaPartitions)
        if (consumerOffsetsE.isLeft) throw new SparkException("get kafka consumer offsets failed:")
        val consumerOffsets = consumerOffsetsE.right.get
        consumerOffsets.foreach {
          case (tp, n) => println("===================================" + tp.topic + "," + tp.partition + "," + n)
        }
        KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder, (String, String)](
          ssc, kafkaParams, consumerOffsets, (mmd: MessageAndMetadata[String, String]) => (mmd.key, mmd.message))
      }
      messages
    }


这里会有几个问题,就是在一个group是新的consumer group时,即首次消费,zk上海没有相应的group offsets目录,这时要先初始化一下zk上的offsets目录,或者是zk上记录的offsets已经过时,由于kafka有定时清理策略,直接从zk上的offsets开始消费会报ArrayOutofRange异常,即找不到offsets所属的index文件了,针对这两种情况,做了以下处理:

def setOrUpdateOffsets(implicit streamingConfig: StreamingConfig, kc: KafkaCluster): Unit = {
    streamingConfig.topicSet.foreach(topic => {
      println("current topic:" + topic)
      var hasConsumed = true
      val kafkaPartitionsE = kc.getPartitions(Set(topic))
      if (kafkaPartitionsE.isLeft) throw new SparkException("get kafka partition failed:")
      val kafkaPartitions = kafkaPartitionsE.right.get
      val consumerOffsetsE = kc.getConsumerOffsets(streamingConfig.group, kafkaPartitions)
      if (consumerOffsetsE.isLeft) hasConsumed = false
      if (hasConsumed) {
        //如果有消费过,有两种可能,如果streaming程序执行的时候出现kafka.common.OffsetOutOfRangeException,说明zk上保存的offsets已经过时了,即kafka的定时清理策略已经将包含该offsets的文件删除。
        //针对这种情况,只要判断一下zk上的consumerOffsets和leaderEarliestOffsets的大小,如果consumerOffsets比leaderEarliestOffsets还小的话,说明是过时的offsets,这时把leaderEarliestOffsets更新为consumerOffsets
        val leaderEarliestOffsets = kc.getEarliestLeaderOffsets(kafkaPartitions).right.get
        println(leaderEarliestOffsets)
        val consumerOffsets = consumerOffsetsE.right.get
        val flag = consumerOffsets.forall {
          case (tp, n) => n < leaderEarliestOffsets(tp).offset
        }
        if (flag) {
          println("consumer group:" + streamingConfig.group + " offsets已经过时,更新为leaderEarliestOffsets")
          val offsets = leaderEarliestOffsets.map {
            case (tp, offset) => (tp, offset.offset)
          }
          kc.setConsumerOffsets(streamingConfig.group, offsets)
        }
        else {
          println("consumer group:" + streamingConfig.group + " offsets正常,无需更新")
        }
      }
      else {
        //如果没有被消费过,则从最新的offset开始消费。
        val leaderLatestOffsets = kc.getLatestLeaderOffsets(kafkaPartitions).right.get
        println(leaderLatestOffsets)
        println("consumer group:" + streamingConfig.group + " 还未消费过,更新为leaderLatestOffsets")
        val offsets = leaderLatestOffsets.map {
          case (tp, offset) => (tp, offset.offset)
        }
        kc.setConsumerOffsets(streamingConfig.group, offsets)
      }
    })
  }

这里又碰到了一个问题,从consumer offsets到leader latest offsets中间延迟了很多消息,在下一次启动的时候,首个batch要处理大量的消息,会导致spark-submit设置的资源无法满足大量消息的处理而导致崩溃。因此在spark-submit启动的时候多加了一个配置:--conf spark.streaming.kafka.maxRatePerPartition=10000。限制每秒钟从topic的每个partition最多消费的消息条数,这样就把首个batch的大量的消息拆分到多个batch中去了,为了更快的消化掉delay的消息,可以调大计算资源和把这个参数调大。

OK,driver启动的问题解决了,那么接下来处理处理完消息后更新zk offsets的工作,这里要注意是在处理完之后再更新,想想如果你消费了消息先更新zk offset在去处理消息将处理好的消息保存到其他地方去,如果后一步由于处理消息的代码有BUG失败了,前一步已经更新了zk了,会导致这部分消息虽然被消费了但是没被处理,等你把处理消息的BUG修复再重新提交后,这部分消息在下次启动的时候不会再被消费了,因为你已经更新了ZK OFFSETS,针对这些因素考虑,部分代码实现如下:



def updateZKOffsets(rdd: RDD[(String, String)])(implicit streamingConfig: StreamingConfig, kc: KafkaCluster): Unit = {
    println("rdd not empty,update zk offset")
    val offsetsList = rdd.asInstanceOf[HasOffsetRanges].offsetRanges


    for (offsets <- offsetsList) {
      val topicAndPartition = TopicAndPartition(offsets.topic, offsets.partition)
      val o = kc.setConsumerOffsets(streamingConfig.group, Map((topicAndPartition, offsets.untilOffset)))
      if (o.isLeft) {
        println(s"Error updating the offset to Kafka cluster: ${o.left.get}")
      }
    }
  }

  def processData(messages: InputDStream[(String, String)])(implicit streamingConfig: StreamingConfig, kc: KafkaCluster): Unit = {
    messages.foreachRDD(rdd => {
      if (!rdd.isEmpty()) {

        val datamodelRDD = streamingConfig.relation match {
          case "1" =>
            val (topic, _) = streamingConfig.topic_table_mapping
            val extractor = streamingConfig.getExtractor(topic)
            // Create direct kafka stream with brokers and topics
            val topicsSet = Set(topic)
            val datamodel = rdd.filter(msg => {
              extractor.filter(msg)
            }).map(msg => extractor.msgToRow(msg))
            datamodel
          case "2" =>
            val (topics, _) = streamingConfig.topic_table_mapping
            val extractors = streamingConfig.getExtractors(topics)
            val topicsSet = topics.split(",").toSet

            //kafka msg为key-value形式,key用来对msg进行分区用的,为了散列存储消息,采集器那边key采用的是:topic|加一个随机数的形式,例如:rd_e_pal|20,split by |取0可以拿到对应的topic名字,这样union在一起的消息可以区分出来自哪一个topic
            val datamodel = rdd.filter(msg => {
              //kafka msg为key-value形式,key用来对msg进行分区用的,为了散列存储消息,采集器那边key采用的是:topic|加一个随机数的形式,例如:rd_e_pal|20,split by |取0可以拿到对应的topic名字,这样union在一起的消息可以区分出来自哪一个topic
              val keyValid = msg != null && msg._1 != null && msg._1.split("\\|").length == 2
              if (keyValid) {
                val topic = msg._1.split("\\|")(0)
                val (_, extractor) = extractors.find(p => {
                  p._1.equalsIgnoreCase(topic)
                }).getOrElse(throw new RuntimeException("配置文件中没有找到topic:" + topic + " 对应的extractor"))
                //trim去掉末尾的换行符,否则取最后一个字段时会有一个\n
                extractor.filter(msg._2.trim)
              }
              else {
                false
              }

            }).map {
              case (key, msgContent) =>
                val topic = key.split("\\|")(0)
                val (_, extractor) = extractors.find(p => {
                  p._1.equalsIgnoreCase(topic)
                }).getOrElse(throw new RuntimeException("配置文件中没有找到topic:" + topic + " 对应的extractor"))
                extractor.msgToRow((key, msgContent))
            }
            datamodel
        }
        //先处理消息
        processRDD(datamodelRDD)
        //再更新offsets
        updateZKOffsets(rdd)
      }
    })
  }

  def processRDD(rdd: RDD[Row])(implicit streamingConfig: StreamingConfig) = {
    if (streamingConfig.targetType == "mongo") {
      val target = streamingConfig.getTarget().asInstanceOf[MongoTarget]
      if (!MongoDBClient.db.collectionExists(target.collection)) {
        println("create collection:" + target.collection)
        MongoDBClient.db.createCollection(target.collection, MongoDBObject("storageEngine" -> MongoDBObject("wiredTiger" -> MongoDBObject())))
        val coll = MongoDBClient.db(target.collection)
        //创建ttl index
        if (target.ttlIndex) {
          val indexs = coll.getIndexInfo
          if (indexs.find(p => p.get("name") == "ttlIndex") == None) {
            coll.createIndex(MongoDBObject(target.ttlColumn -> 1), MongoDBObject("expireAfterSeconds" -> target.ttlExpire, "name" -> "ttlIndex"))
          }
        }
      }

    }

    val (_, table) = streamingConfig.topic_table_mapping
    val schema = streamingConfig.getTableSchema(table)

    // Get the singleton instance of SQLContext
    val sqlContext = HIVEContextSingleton.getInstance(rdd.sparkContext)

    // Convert RDD[String] to RDD[case class] to DataFrame
    val dataFrame = sqlContext.createDataFrame(rdd, schema)

    // Register as table
    dataFrame.registerTempTable(table)

    // Do word count on table using SQL and print it
    val results = sqlContext.sql(streamingConfig.sql)
    //select dt,hh(vtm) as hr,app_key, collect_set(device_id) as deviceids  from rd_e_app_header where dt=20150401 and hh(vtm)='01' group by dt,hh(vtm),app_key limit 100 ;
    //          results.show()
    streamingConfig.targetType match {
      case "mongo" => saveToMongo(results)
      case "show" => results.show()
    }

  }


  def saveToMongo(df: DataFrame)(implicit streamingConfig: StreamingConfig) = {
    val target = streamingConfig.getTarget().asInstanceOf[MongoTarget]
    val coll = MongoDBClient.db(target.collection)
    val result = df.collect()
    if (result.size > 0) {
      val bulkWrite = coll.initializeUnorderedBulkOperation
      result.foreach(row => {
        val id = row(target.pkIndex)
        val setFields = target.columns.filter(p => p.op == "set").map(f => (f.name, row(f.index))).toArray
        val incFields = target.columns.filter(p => p.op == "inc").map(f => {
          (f.name, row(f.index).asInstanceOf[Long])
        }).toArray
        //        obj=obj.++($addToSet(MongoDBObject("test"->MongoDBObject("$each"->Array(3,4)),"test1"->MongoDBObject("$each"->Array(1,2)))))
        var obj = MongoDBObject()
        var addToSetObj = MongoDBObject()
        target.columns.filter(p => p.op == "addToSet").foreach(col => {
          col.mType match {
            case "Int" =>
              addToSetObj = addToSetObj.++(col.name -> MongoDBObject("$each" -> row(col.index).asInstanceOf[ArrayBuffer[Int]]))
            case "Long" =>
              addToSetObj = addToSetObj.++(col.name -> MongoDBObject("$each" -> row(col.index).asInstanceOf[ArrayBuffer[Long]]))
            case "String" =>
              addToSetObj = addToSetObj.++(col.name -> MongoDBObject("$each" -> row(col.index).asInstanceOf[ArrayBuffer[String]]))
          }

        })
        if (addToSetObj.size > 0) obj = obj.++($addToSet(addToSetObj))
        if (incFields.size > 0) obj = obj.++($inc(incFields: _*))
        if (setFields.size > 0) obj = obj.++($set(setFields: _*))
        bulkWrite.find(MongoDBObject("_id" -> id)).upsert().updateOne(obj)
      })
      bulkWrite.execute()
    }
  }

仔细想一想,还是没有实现精确一次的语义,写入mongo和更新ZK由于不是一个事务的,如果更新mongo成功,然后更新ZK失败,则下次启动的时候这个批次的数据就被重复计算,对于UV由于是addToSet去重操作,没什么影响,但是PV是inc操作就会多算这一个批次的的数据,其实如果batch time比较短的话,其实都还是可以接受的。























路过

雷人

握手

鲜花

鸡蛋

评论 (0 个评论)

facelist doodle 涂鸦板

您需要登录后才可以评论 登录 | 立即注册

关闭

推荐上一条 /2 下一条