||
Semaphore当前在多线程环境下被扩放使用,操作系统的信号量是个很重要的概念,在进程控制方面都有应用。Java 并发库 的Semaphore 可以很轻松完成信号量控制,Semaphore可以控制某个资源可被同时访问的个数,通过 acquire() 获取一个许可,如果没有就等待,而 release() 释放一个许可。比如在Windows下可以设置共享文件的最大客户端访问个数。
Semaphore实现的功能就类似厕所有5个坑,假如有10个人要上厕所,那么同时只能有多少个人去上厕所呢?同时只能有5个人能够占用,当5个人中 的任何一个人让开后,其中等待的另外5个人中又有一个人可以占用了。另外等待的5个人中可以是随机获得优先机会,也可以是按照先来后到的顺序获得机会,这取决于构造Semaphore对象时传入的参数选项。单个信号量的Semaphore对象可以实现互斥锁的功能,并且可以是由一个线程获得了“锁”,再由另一个线程释放“锁”,这可应用于死锁恢复的一些场合。
Semaphore维护了当前访问的个数,提供同步机制,控制同时访问的个数。在数据结构中链表可以保存“无限”的节点,用Semaphore可以实现有限大小的链表。另外重入锁 ReentrantLock 也可以实现该功能,但实现上要复杂些。
Semaphore应用场景:------------------------------------------------------------------------------------------------------------------------------------------
1.从概念上讲,信号量维护了一个许可集。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。
2. Semaphore并不使用实际的许可对象,Semaphore 只对可用许可进行计数,并采取相应的行动。
3.Semaphore 通常用于限制可以访问某些资源(物理或逻辑的)的线程数目。
--------------------------------------------------------------------------------------------------------------------------------------------------------------------
Semaphore和CountDownLatch的比较-------------------------------------------------------------------------------------------------------------------------
相同点 :
两者都是用于线程同步的工具类,都通过定义了一个继承AbstractQueuedSynchronizer的内部类Sync来实现具体的功能.
不同点 :
1. Semaphore提供了公平和非公平两种策略, 而CountDownLatch则不具备.
2. CountDownLatch: 一个或者是一部分线程,等待另外一部线程都完成操作。
Semaphorr: 维护一个许可集.通常用于限制可以访问某些资源(物理或逻辑的)的线程数目.
3. CountDownLatch中计数是不能被重置的。CountDownLatch适用于一次同步。当使用CountDownLatch时,任何线程允许多次调用countDown(). 那些调用了await()方法的线程将被阻塞,直到那些没有被阻塞线程调用countDown()使计数到达0为止
。
Semaphore允许线程获取许可, 未获得许可的线程需要等待.这样防止了在同一时间有太多的线程执行.Semaphore的值被获取到后是可以释放的,并不像CountDownLatch那样一直减到0。
4. 使用CountDownLatch时,它关注的一个线程或者多个线程需要在其它在一组线程完成操作之后,在去做一些事情。比如:服务的启动等。使用Semaphore时,它关注的是某一个资源最多同时能被几个线程访问
--------------------------------------------------------------------------------------------------------------------------------------------------------------------
下面的Demo中申明了一个只有5个许可的Semaphore,而有20个线程要访问这个资源,通过acquire()和release()获取和释放访问许可。
package com.test;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
public class TestSemaphore {
public static void main(String[] args) {
// 线程池
ExecutorService exec = Executors.newCachedThreadPool();
// 只能5个线程同时访问
final Semaphore semp = new Semaphore(5);
// 模拟20个客户端访问
for (int index = 0; index < 20; index++) {
final int NO = index;
Runnable run = new Runnable() {
public void run() {
try {
// 获取许可
semp.acquire();
System.out.println("Accessing: " + NO);
Thread.sleep((long) (Math.random() * 10000));
// 访问完后,释放
semp.release();
System.out.println("-----------------"+semp.availablePermits());
} catch (InterruptedException e) {
e.printStackTrace();
}
}
};
exec.execute(run);
}
// 退出线程池
exec.shutdown();
}
}
-------------------------------------------------------------------------------------CountDownLatch使用场景
CountDownLatch,一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待。
主要方法
public CountDownLatch(int count);
public void countDown();
public void await() throws InterruptedException
构造方法参数指定了计数的次数
countDown方法,当前线程调用此方法,则计数减一
awaint方法,调用此方法会一直阻塞当前线程,直到计时器的值为0
例子