立即注册 登录
About云-梭伦科技 返回首页

nettman的个人空间 https://aboutyun.com/?21 [收藏] [复制] [分享] [RSS]

日志

Storm杂记 — Field Grouping和Shuffle Grouping的区别

已有 1497 次阅读2015-4-22 22:23




       最近研究Storm的Stream Grouping的时候,对Field Grouping和Shuffle Grouping理解不是很透彻。去看WordCountTopology也不怎么理解,后来脑洞一开,加了一行代码再次运行,彻底顿悟。只能说自己对Storm的基本概念还是没吃透啊。(WordCountTopology这个例子请自行参考Storm-Starter)


public void execute(Tuple tuple, BasicOutputCollector collector) {  
    String word = tuple.getString(0);  
  
    // 添加这行代码的作用是看看值相等的word是不是同一个实例执行的,实时证明确实如此  
    System.out.println(this + "====" + word);  
      
    Integer count = counts.get(word);  
    if (count == null)  
        count = 0;  
    count++;  
    counts.put(word, count);  
    collector.emit(new Values(word, count));  
}  



经过反复测试,下面是我个人的一些总结,如果有缺少或者错误我会及时改正。

官方文档里有这么一句话:“if the stream is grouped by the “user-id” field, tuples with the same “user-id” will always go to the same task”

一个task就是一个处理逻辑的实例,所以fields能根据tuple stream的id,也就是下面定义的xxx

public void declareOutputFields(OutputFieldsDeclarer declarer) {
        declarer.declare(new Fields("xxx"));
}

xxx所代表的具体内容会由某一个task来处理,并且同一个xxx对应的内容,处理这个内容的task实例是同一个。

比如说:

bolt第一次emit三个流,即xxx有luonq pangyang qinnl三个值,假设分别建立三个task实例来处理:


luonq -> instance1
pangyang -> instance2
qinnl -> instance3

然后第二次emit四个流,即xxx有luonq qinnanluo py pangyang四个值,假设还是由刚才的三个task实例来处理:
luonq -> instance1
qinnanluo -> instance2
py -> instance3
pangyang -> instance2
然后第三次emit两个流,即xxx有py qinnl两个值,假设还是由刚才的三个task实例来处理:

py -> instance3  
qinnl -> instance3  

最后我们看看三个task实例都处理了哪些值,分别处理了多少次:

instance1: luonq(处理2次)
instance2: pangyang(处理2次) qinnanluo(处理1次)
instance3: qinnl(处理2次) py(处理2次)

结论:
1. emit发出的值第一次由哪个task实例处理是随机的,此后再次出现这个值,就固定由最初处理他的那个task实例再次处理,直到topology结束

2. 一个task实例可以处理多个emit发出的值

3. 和shuffle Grouping的区别就在于,当emit发出同样的值时,处理他的task是随机的








转载请注明出处:http://blog.csdn.net/luonanqin

路过

雷人

握手

鲜花

鸡蛋

评论 (0 个评论)

facelist doodle 涂鸦板

您需要登录后才可以评论 登录 | 立即注册

关闭

推荐上一条 /2 下一条