|
一、概述
MapReduce框架对处理结果的输出会根据key值进行默认的排序,这个默认排序可以满足一部分需求,但是也是十分有限的。在
我们实际的需求当中,往往有要对reduce输出结果进行二次排序的需求。对于二次排序的实现,网络上已经有很多人分享过了,但是对二次排序的实现的原理
以及整个MapReduce框架的处理流程的分析还是有非常大的出入,而且部分分析是没有经过验证的。本文将通过一个实际的MapReduce二次排序例
子,讲述二次排序的实现和其MapReduce的整个处理流程,并且通过结果和map、reduce端的日志来验证所描述的处理流程的正确性。
二、需求描述
1、输入数据:
sort1 1
sort2 3
sort2 77
sort2 54
sort1 2
sort6 22
sort6 221
sort6 20
2、目标输出
sort1 1,2
sort2 3,54,77
sort6 20,22,221
三、解决思路
1、首先,在思考解决问题思路时,我们先应该深刻的理解MapReduce处理数据的整个流程,这是最基础的,不然的话是不可能找到解决问题的思路的。我 描述一下MapReduce处理数据的大概简单流程:首先,MapReduce框架通过getSplit方法实现对原始文件的切片之后,每一个切片对应着 一个map task,inputSplit输入到Map函数进行处理,中间结果经过环形缓冲区的排序,然后分区、自定义二次排序(如果有的话)和合并,再通过 shuffle操作将数据传输到reduce task端,reduce端也存在着缓冲区,数据也会在缓冲区和磁盘中进行合并排序等操作,然后对数据按照Key值进行分组,然后没处理完一个分组之后就 会去调用一次reduce函数,最终输出结果。大概流程我画了一下,如下图:
2、具体解决思路
(1)Map端处理:
根据上面的需求,我们有一个非常明确的目标就是要对第一列相同的记录合并,并且对合并后的数字进行排序。我们都知道MapReduce框架不管是默认排序 或者是自定义排序都只是对Key值进行排序,现在的情况是这些数据不是key值,怎么办?其实我们可以将原始数据的Key值和其对应的数据组合成一个新的 Key值,然后新的Key值对应的还是之前的数字。那么我们就可以将原始数据的map输出变成类似下面的数据结构:
{[sort1,1],1}
{[sort2,3],3}
{[sort2,77],77}
{[sort2,54],54}
{[sort1,2],2}
{[sort6,22],22}
{[sort6,221],221}
{[sort6,20],20}
那
么我们只需要对[]里面的新key值进行排序就ok了。然后我们需要自定义一个分区处理器,因为我的目标不是想将新key相同的传到同一个reduce
中,而是想将新key中的第一个字段相同的才放到同一个reduce中进行分组合并,所以我们需要根据新key值中的第一个字段来自定义一个分区处理器。
通过分区操作后,得到的数据流如下:
Partition1:{[sort1,1],1}、{[sort1,2],2}
Partition2:{[sort2,3],3}、{[sort2,77],77}、{[sort2,54],54}
Partition3:{[sort6,22],22}、{[sort6,221],221}、{[sort6,20],20}
分区操作完成之后,我调用自己的自定义排序器对新的Key值进行排序。
{[sort1,1],1}
{[sort1,2],2}
{[sort2,3],3}
{[sort2,54],54}
{[sort2,77],77}
{[sort6,20],20}
{[sort6,22],22}
{[sort6,221],221}
(2)Reduce端处理:
经过Shuffle处理之后,数据传输到Reducer端了。在Reducer端对按照组合键的第一个字段来进行分组,并且没处理完一次分组之后就会调用一次reduce函数来对这个分组进行处理输出。最终的各个分组的数据结构变成类似下面的数据结构:
{sort1,[1,2]}
{sort2,[3,54,77]}
{sort6,[20,22,221]}
四、具体实现
1、自定义组合键
package com.mr;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.Hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* 自定义组合键
* @author zenghzhaozheng
*/
public class CombinationKey implements WritableComparable<CombinationKey>{
private static final Logger logger = LoggerFactory.getLogger(CombinationKey.class);
private Text firstKey;
private IntWritable secondKey;
public CombinationKey() {
this.firstKey = new Text();
this.secondKey = new IntWritable();
}
public Text getFirstKey() {
return this.firstKey;
}
public void setFirstKey(Text firstKey) {
this.firstKey = firstKey;
}
public IntWritable getSecondKey() {
return this.secondKey;
}
public void setSecondKey(IntWritable secondKey) {
this.secondKey = secondKey;
}
@Override
public void readFields(DataInput dateInput) throws IOException {
// TODO Auto-generated method stub
this.firstKey.readFields(dateInput);
this.secondKey.readFields(dateInput);
}
@Override
public void write(DataOutput outPut) throws IOException {
this.firstKey.write(outPut);
this.secondKey.write(outPut);
}
/**
* 自定义比较策略
* 注意:该比较策略用于mapreduce的第一次默认排序,也就是发生在map阶段的sort小阶段,
* 发生地点为环形缓冲区(可以通过io.sort.mb进行大小调整)
*/
@Override
public int compareTo(CombinationKey combinationKey) {
logger.info("-------CombinationKey flag-------");
return this.firstKey.compareTo(combinationKey.getFirstKey());
}
}
说明:在自定义组合键的时候,我们需要特别注意,一定要实现WritableComparable接口,并且实现compareTo方法的比较策 略。这个用于mapreduce的第一次默认排序,也就是发生在map阶段的sort小阶段,发生地点为环形缓冲区(可以通过io.sort.mb进行大 小调整),但是其对我们最终的二次排序结果是没有影响的。我们二次排序的最终结果是由我们的自定义比较器决定的。
2、自定义分区器
package com.mr;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Partitioner;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* 自定义分区
* @author zengzhaozheng
*/
public class DefinedPartition extends Partitioner<CombinationKey,IntWritable>{
private static final Logger logger = LoggerFactory.getLogger(DefinedPartition.class);
/**
* 数据输入来源:map输出
* @author zengzhaozheng
* @param key map输出键值
* @param value map输出value值
* @param numPartitions 分区总数,即reduce task个数
*/
@Override
public int getPartition(CombinationKey key, IntWritable value,int numPartitions) {
logger.info("--------enter DefinedPartition flag--------");
/**
* 注意:这里采用默认的hash分区实现方法
* 根据组合键的第一个值作为分区
* 这里需要说明一下,如果不自定义分区的话,mapreduce框架会根据默认的hash分区方法,
* 将整个组合将相等的分到一个分区中,这样的话显然不是我们要的效果
*/
logger.info("--------out DefinedPartition flag--------");
return (key.getFirstKey().hashCode()&Integer.MAX_VALUE)%numPartitions;
}
}
说明:具体说明看代码注释。
3、自定义比较器
package com.mr;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* 自定义二次排序策略
* @author zengzhaoheng
*/
public class DefinedComparator extends WritableComparator {
private static final Logger logger = LoggerFactory.getLogger(DefinedComparator.class);
public DefinedComparator() {
super(CombinationKey.class,true);
}
@Override
public int compare(WritableComparable combinationKeyOne,
WritableComparable CombinationKeyOther) {
logger.info("---------enter DefinedComparator flag---------");
CombinationKey c1 = (CombinationKey) combinationKeyOne;
CombinationKey c2 = (CombinationKey) CombinationKeyOther;
/**
* 确保进行排序的数据在同一个区内,如果不在同一个区则按照组合键中第一个键排序
* 另外,这个判断是可以调整最终输出的组合键第一个值的排序
* 下面这种比较对第一个字段的排序是升序的,如果想降序这将c1和c2���过来(假设1)
*/
if(!c1.getFirstKey().equals(c2.getFirstKey())){
logger.info("---------out DefinedComparator flag---------");
return c1.getFirstKey().compareTo(c2.getFirstKey());
}
else{//按照组合键的第二个键的升序排序,将c1和c2倒过来则是按照数字的降序排序(假设2)
logger.info("---------out DefinedComparator flag---------");
return c1.getSecondKey().get()-c2.getSecondKey().get();//0,负数,正数
}
/**
* (1)按照上面的这种实现最终的二次排序结果为:
* sort1 1,2
* sort2 3,54,77
* sort6 20,22,221
* (2)如果实现假设1,则最终的二次排序结果为:
* sort6 20,22,221
* sort2 3,54,77
* sort1 1,2
* (3)如果实现假设2,则最终的二次排序结果为:
* sort1 2,1
* sort2 77,54,3
* sort6 221,22,20
*/
}
}
说明:自定义比较器决定了我们二次排序的结果。自定义比较器需要继承WritableComparator类,并且重写compare方法实现自己的比较策略。具体的排序问题请看注释。
4、自定义分组策略
package com.mr;
import org.apache.Hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* 自定义分组策略
* 将组合将中第一个值相同的分在一组
* @author zengzhaozheng
*/
public class DefinedGroupSort extends WritableComparator{
private static final Logger logger = LoggerFactory.getLogger(DefinedGroupSort.class);
public DefinedGroupSort() {
super(CombinationKey.class,true);
}
@Override
public int compare(WritableComparable a, WritableComparable b) {
logger.info("-------enter DefinedGroupSort flag-------");
CombinationKey ck1 = (CombinationKey)a;
CombinationKey ck2 = (CombinationKey)b;
logger.info("-------Grouping result:"+ck1.getFirstKey().
compareTo(ck2.getFirstKey())+"-------");
logger.info("-------out DefinedGroupSort flag-------");
return ck1.getFirstKey().compareTo(ck2.getFirstKey());
}
}
5、主体程序实现
package com.mr;
import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* @author zengzhaozheng
*
* 用途说明:二次排序mapreduce
* 需求描述:
* ---------------输入-----------------
* sort1,1
* sort2,3
* sort2,77
* sort2,54
* sort1,2
* sort6,22
* sort6,221
* sort6,20
* ---------------目标输出---------------
* sort1 1,2
* sort2 3,54,77
* sort6 20,22,221
*/
public class SecondSortMR extends Configured implements Tool {
private static final Logger logger = LoggerFactory.getLogger(SecondSortMR.class);
public static class SortMapper extends Mapper<Text, Text, CombinationKey, IntWritable> {
//---------------------------------------------------------
/**
* 这里特殊要说明一下,为什么要将这些变量写在map函数外边。
* 对于分布式的程序,我们一定要注意到内存的使用情况,对于mapreduce框架,
* 每一行的原始记录的处理都要调用一次map函数,假设,此个map要处理1亿条输
* 入记录,如果将这些变量都定义在map函数里边则会导致这4个变量的对象句柄编
* 程非常多(极端情况下将产生4*1亿个句柄,当然java也是有自动的gc机制的,
* 一定不会达到这么多),导致栈内存被浪费掉。我们将其写在map函数外边,
* 顶多就只有4个对象句柄。
*/
CombinationKey combinationKey = new CombinationKey();
Text sortName = new Text();
IntWritable score = new IntWritable();
String[] inputString = null;
//---------------------------------------------------------
@Override
protected void map(Text key, Text value, Context context)
throws IOException, InterruptedException {
logger.info("---------enter map function flag---------");
//过滤非法记录
if(key == null || value == null || key.toString().equals("")
|| value.equals("")){
return;
}
sortName.set(key.toString());
score.set(Integer.parseInt(value.toString()));
combinationKey.setFirstKey(sortName);
combinationKey.setSecondKey(score);
//map输出
context.write(combinationKey, score);
logger.info("---------out map function flag---------");
}
}
public static class SortReducer extends
Reducer<CombinationKey, IntWritable, Text, Text> {
StringBuffer sb = new StringBuffer();
Text sore = new Text();
/**
* 这里要注意一下reduce的调用时机和次数:reduce每处理一个分组的时候会调用一
* 次reduce函数。也许有人会疑问,分组是什么?看个例子就明白了:
* eg:
* {{sort1,{1,2}},{sort2,{3,54,77}},{sort6,{20,22,221}}}
* 这个数据结果是分组过后的数据结构,那么一个分组分别为{sort1,{1,2}}、
* {sort2,{3,54,77}}、{sort6,{20,22,221}}
*/
@Override
protected void reduce(CombinationKey key,
Iterable<IntWritable> value, Context context)
throws IOException, InterruptedException {
sb.delete(0, sb.length());//先清除上一个组的数据
Iterator<IntWritable> it = value.iterator();
while(it.hasNext()){
sb.append(it.next()+",");
}
//去除最后一个逗号
if(sb.length()>0){
sb.deleteCharAt(sb.length()-1);
}
sore.set(sb.toString());
context.write(key.getFirstKey(),sore);
logger.info("---------enter reduce function flag---------");
logger.info("reduce Input data:{["+key.getFirstKey()+","+
key.getSecondKey()+"],["+sore+"]}");
logger.info("---------out reduce function flag---------");
}
}
@Override
public int run(String[] args) throws Exception {
Configuration conf=getConf(); //获得配置文件对象
Job job=new Job(conf,"SoreSort");
job.setJarByClass(SecondSortMR.class);
FileInputFormat.addInputPath(job, new Path(args[0])); //设置map输入文件路径
FileOutputFormat.setOutputPath(job, new Path(args[1])); //设置reduce输出文件路径
job.setMapperClass(SortMapper.class);
job.setReducerClass(SortReducer.class);
job.setPartitionerClass(DefinedPartition.class); //设置自定义分区策略
job.setGroupingComparatorClass(DefinedGroupSort.class); //设置自定义分组策略
job.setSortComparatorClass(DefinedComparator.class); //设置自定义二次排序策略
job.setInputFormatClass(KeyValueTextInputFormat.class); //设置文件输入格式
job.setOutputFormatClass(TextOutputFormat.class);//使用默认的output格式
//设置map的输出key和value类型
job.setMapOutputKeyClass(CombinationKey.class);
job.setMapOutputValueClass(IntWritable.class);
//设置reduce的输出key和value类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.waitForCompletion(true);
return job.isSuccessful()?0:1;
}
public static void main(String[] args) {
try {
int returnCode = ToolRunner.run(new SecondSortMR(),args);
System.exit(returnCode);
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
6、运行最终结果
打jar包运行:
最终结果:
五、处理流程验证
看前面的代码,都知道我在各个组件上已经设置好了相应的标志,用于追踪整个MapReduce处理二次排序的处理流程。现在让我们分别看看Map端和Reduce端的日志情况。
(1)Map端日志分析
2014-03-18 17:07:45,278 INFO org.apache.Hadoop.util.NativeCodeLoader: Loaded the native-hadoop library
2014-03-18 17:07:45,432 WARN org.apache.hadoop.metrics2.impl.MetricsSystemImpl: Source name ugi already exists!
2014-03-18 17:07:45,501 INFO org.apache.hadoop.util.ProcessTree: setsid exited with exit code 0
2014-03-18
17:07:45,506 INFO org.apache.hadoop.mapred.Task: Using
ResourceCalculatorPlugin :
org.apache.hadoop.util.LinuxResourceCalculatorPlugin@69b01afa
2014-03-18 17:07:45,584 INFO org.apache.hadoop.mapred.MapTask: io.sort.mb = 100
2014-03-18 17:07:45,618 INFO org.apache.hadoop.mapred.MapTask: data buffer = 79691776/99614720
2014-03-18 17:07:45,618 INFO org.apache.hadoop.mapred.MapTask: record buffer = 262144/327680
2014-03-18 17:07:45,626 WARN org.apache.hadoop.io.compress.snappy.LoadSnappy: Snappy native library not loaded
2014-03-18 17:07:45,634 INFO com.mr.SecondSortMR: ---------enter map function flag---------
2014-03-18 17:07:45,634 INFO com.mr.DefinedPartition: --------enter DefinedPartition flag--------
2014-03-18 17:07:45,634 INFO com.mr.DefinedPartition: --------out DefinedPartition flag--------
2014-03-18 17:07:45,634 INFO com.mr.SecondSortMR: ---------out map function flag---------
2014-03-18 17:07:45,634 INFO com.mr.SecondSortMR: ---------enter map function flag---------
2014-03-18 17:07:45,635 INFO com.mr.DefinedPartition: --------enter DefinedPartition flag--------
2014-03-18 17:07:45,635 INFO com.mr.DefinedPartition: --------out DefinedPartition flag--------
2014-03-18 17:07:45,635 INFO com.mr.SecondSortMR: ---------out map function flag---------
2014-03-18 17:07:45,635 INFO com.mr.SecondSortMR: ---------enter map function flag---------
2014-03-18 17:07:45,635 INFO com.mr.DefinedPartition: --------enter DefinedPartition flag--------
2014-03-18 17:07:45,635 INFO com.mr.DefinedPartition: --------out DefinedPartition flag--------
2014-03-18 17:07:45,635 INFO com.mr.SecondSortMR: ---------out map function flag---------
2014-03-18 17:07:45,635 INFO com.mr.SecondSortMR: ---------enter map function flag---------
2014-03-18 17:07:45,635 INFO com.mr.DefinedPartition: --------enter DefinedPartition flag--------
2014-03-18 17:07:45,635 INFO com.mr.DefinedPartition: --------out DefinedPartition flag--------
2014-03-18 17:07:45,635 INFO com.mr.SecondSortMR: ---------out map function flag---------
2014-03-18 17:07:45,635 INFO com.mr.SecondSortMR: ---------enter map function flag---------
2014-03-18 17:07:45,636 INFO com.mr.DefinedPartition: --------enter DefinedPartition flag--------
2014-03-18 17:07:45,636 INFO com.mr.DefinedPartition: --------out DefinedPartition flag--------
2014-03-18 17:07:45,636 INFO com.mr.SecondSortMR: ---------out map function flag---------
2014-03-18 17:07:45,636 INFO com.mr.SecondSortMR: ---------enter map function flag---------
2014-03-18 17:07:45,636 INFO com.mr.DefinedPartition: --------enter DefinedPartition flag--------
2014-03-18 17:07:45,636 INFO com.mr.DefinedPartition: --------out DefinedPartition flag--------
2014-03-18 17:07:45,636 INFO com.mr.SecondSortMR: ---------out map function flag---------
2014-03-18 17:07:45,636 INFO com.mr.SecondSortMR: ---------enter map function flag---------
2014-03-18 17:07:45,636 INFO com.mr.DefinedPartition: --------enter DefinedPartition flag--------
2014-03-18 17:07:45,636 INFO com.mr.DefinedPartition: --------out DefinedPartition flag--------
2014-03-18 17:07:45,636 INFO com.mr.SecondSortMR: ---------out map function flag---------
2014-03-18 17:07:45,636 INFO com.mr.SecondSortMR: ---------enter map function flag---------
2014-03-18 17:07:45,637 INFO com.mr.DefinedPartition: --------enter DefinedPartition flag--------
2014-03-18 17:07:45,637 INFO com.mr.DefinedPartition: --------out DefinedPartition flag--------
2014-03-18 17:07:45,637 INFO com.mr.SecondSortMR: ---------out map function flag---------
2014-03-18 17:07:45,637 INFO org.apache.hadoop.mapred.MapTask: Starting flush of map output
2014-03-18 17:07:45,651 INFO com.mr.DefinedComparator: ---------enter DefinedComparator flag---------
2014-03-18 17:07:45,651 INFO com.mr.DefinedComparator: ---------out DefinedComparator flag---------
2014-03-18 17:07:45,651 INFO com.mr.DefinedComparator: ---------enter DefinedComparator flag---------
2014-03-18 17:07:45,651 INFO com.mr.DefinedComparator: ---------out DefinedComparator flag---------
2014-03-18 17:07:45,651 INFO com.mr.DefinedComparator: ---------enter DefinedComparator flag---------
2014-03-18 17:07:45,651 INFO com.mr.DefinedComparator: ---------out DefinedComparator flag---------
2014-03-18 17:07:45,651 INFO com.mr.DefinedComparator: ---------enter DefinedComparator flag---------
2014-03-18 17:07:45,651 INFO com.mr.DefinedComparator: ---------out DefinedComparator flag---------
2014-03-18 17:07:45,651 INFO com.mr.DefinedComparator: ---------enter DefinedComparator flag---------
2014-03-18 17:07:45,651 INFO com.mr.DefinedComparator: ---------out DefinedComparator flag---------
2014-03-18 17:07:45,652 INFO com.mr.DefinedComparator: ---------enter DefinedComparator flag---------
2014-03-18 17:07:45,652 INFO com.mr.DefinedComparator: ---------out DefinedComparator flag---------
2014-03-18 17:07:45,652 INFO com.mr.DefinedComparator: ---------enter DefinedComparator flag---------
2014-03-18 17:07:45,652 INFO com.mr.DefinedComparator: ---------out DefinedComparator flag---------
2014-03-18 17:07:45,652 INFO com.mr.DefinedComparator: ---------enter DefinedComparator flag---------
2014-03-18 17:07:45,652 INFO com.mr.DefinedComparator: ---------out DefinedComparator flag---------
2014-03-18 17:07:45,652 INFO com.mr.DefinedComparator: ---------enter DefinedComparator flag---------
2014-03-18 17:07:45,652 INFO com.mr.DefinedComparator: ---------out DefinedComparator flag---------
2014-03-18 17:07:45,652 INFO com.mr.DefinedComparator: ---------enter DefinedComparator flag---------
2014-03-18 17:07:45,652 INFO com.mr.DefinedComparator: ---------out DefinedComparator flag---------
2014-03-18 17:07:45,652 INFO com.mr.DefinedComparator: ---------enter DefinedComparator flag---------
2014-03-18 17:07:45,652 INFO com.mr.DefinedComparator: ---------out DefinedComparator flag---------
2014-03-18 17:07:45,652 INFO com.mr.DefinedComparator: ---------enter DefinedComparator flag---------
2014-03-18 17:07:45,652 INFO com.mr.DefinedComparator: ---------out DefinedComparator flag---------
2014-03-18 17:07:45,652 INFO com.mr.DefinedComparator: ---------enter DefinedComparator flag---------
2014-03-18 17:07:45,652 INFO com.mr.DefinedComparator: ---------out DefinedComparator flag---------
2014-03-18 17:07:45,656 INFO org.apache.hadoop.mapred.MapTask: Finished spill 0
2014-03-18
17:07:45,661 INFO org.apache.hadoop.mapred.Task:
Task:attempt_201312292019_13586_m_000000_0 is done. And is in the
process of commiting
2014-03-18 17:07:48,494 INFO org.apache.hadoop.mapred.Task: Task 'attempt_201312292019_13586_m_000000_0' done.
2014-03-18
17:07:48,526 INFO org.apache.hadoop.mapred.TaskLogsTruncater:
Initializing logs' truncater with mapRetainSize=-1 and
reduceRetainSize=-1
2014-03-18 17:07:48,548 INFO
org.apache.hadoop.io.nativeio.NativeIO: Initialized cache for UID to
User mapping with a cache timeout of 14400 seconds.
2014-03-18
17:07:48,548 INFO org.apache.hadoop.io.nativeio.NativeIO: Got UserName
hadoop for UID 1000 from the native implementation
从map端的日志,我们可以很容易的看出来每一条记录开始是进入到map函数进行处理,处理完了之后立马就入自定义分区函数中对其进行分区,当所有输入数据经过map函数和分区函数处理完之后,就调用自定义二次排序函数对其进行排序。
(2)Reduce端日志分析
2014-03-18 17:07:51,266 INFO org.apache.hadoop.util.NativeCodeLoader: Loaded the native-hadoop library
2014-03-18 17:07:51,418 WARN org.apache.hadoop.metrics2.impl.MetricsSystemImpl: Source name ugi already exists!
2014-03-18 17:07:51,486 INFO org.apache.hadoop.util.ProcessTree: setsid exited with exit code 0
2014-03-18
17:07:51,491 INFO org.apache.hadoop.mapred.Task: Using
ResourceCalculatorPlugin :
org.apache.hadoop.util.LinuxResourceCalculatorPlugin@28bb494b
2014-03-18
17:07:51,537 INFO org.apache.hadoop.mapred.ReduceTask:
ShuffleRamManager: MemoryLimit=195749472, MaxSingleShuffleLimit=48937368
2014-03-18
17:07:51,542 INFO org.apache.hadoop.mapred.ReduceTask:
attempt_201312292019_13586_r_000000_0 Thread started: Thread for merging
on-disk files
2014-03-18 17:07:51,542 INFO
org.apache.hadoop.mapred.ReduceTask:
attempt_201312292019_13586_r_000000_0 Thread started: Thread for merging
in memory files
2014-03-18 17:07:51,542 INFO
org.apache.hadoop.mapred.ReduceTask:
attempt_201312292019_13586_r_000000_0 Thread waiting: Thread for merging
on-disk files
2014-03-18 17:07:51,543 INFO
org.apache.hadoop.mapred.ReduceTask:
attempt_201312292019_13586_r_000000_0 Need another 1 map output(s) where
0 is already in progress
2014-03-18 17:07:51,543 INFO
org.apache.hadoop.mapred.ReduceTask:
attempt_201312292019_13586_r_000000_0 Thread started: Thread for polling
Map Completion Events
2014-03-18 17:07:51,543 INFO
org.apache.hadoop.mapred.ReduceTask:
attempt_201312292019_13586_r_000000_0 Scheduled 0 outputs (0 slow hosts
and0 dup hosts)
2014-03-18 17:07:56,544 INFO
org.apache.hadoop.mapred.ReduceTask:
attempt_201312292019_13586_r_000000_0 Scheduled 1 outputs (0 slow hosts
and0 dup hosts)
2014-03-18 17:07:57,553 INFO org.apache.hadoop.mapred.ReduceTask: GetMapEventsThread exiting
2014-03-18 17:07:57,553 INFO org.apache.hadoop.mapred.ReduceTask: getMapsEventsThread joined.
2014-03-18 17:07:57,553 INFO org.apache.hadoop.mapred.ReduceTask: Closed ram manager
2014-03-18 17:07:57,553 INFO org.apache.hadoop.mapred.ReduceTask: Interleaved on-disk merge complete: 0 files left.
2014-03-18 17:07:57,553 INFO org.apache.hadoop.mapred.ReduceTask: In-memory merge complete: 1 files left.
2014-03-18 17:07:57,577 INFO org.apache.hadoop.mapred.Merger: Merging 1 sorted segments
2014-03-18
17:07:57,577 INFO org.apache.hadoop.mapred.Merger: Down to the last
merge-pass, with 1 segments left of total size: 130 bytes
2014-03-18
17:07:57,583 INFO org.apache.hadoop.mapred.ReduceTask: Merged 1
segments, 130 bytes to disk to satisfy reduce memory limit
2014-03-18 17:07:57,584 INFO org.apache.hadoop.mapred.ReduceTask: Merging 1 files, 134 bytes from disk
2014-03-18 17:07:57,584 INFO org.apache.hadoop.mapred.ReduceTask: Merging 0 segments, 0 bytes from memory into reduce
2014-03-18 17:07:57,584 INFO org.apache.hadoop.mapred.Merger: Merging 1 sorted segments
2014-03-18
17:07:57,586 INFO org.apache.hadoop.mapred.Merger: Down to the last
merge-pass, with 1 segments left of total size: 130 bytes
2014-03-18 17:07:57,599 INFO com.mr.DefinedGroupSort: -------enter DefinedGroupSort flag-------
2014-03-18 17:07:57,599 INFO com.mr.DefinedGroupSort: -------Grouping result:0-------
2014-03-18 17:07:57,599 INFO com.mr.DefinedGroupSort: -------out DefinedGroupSort flag-------
2014-03-18 17:07:57,599 INFO com.mr.DefinedGroupSort: -------enter DefinedGroupSort flag-------
2014-03-18 17:07:57,599 INFO com.mr.DefinedGroupSort: -------Grouping result:-1-------
2014-03-18 17:07:57,599 INFO com.mr.DefinedGroupSort: -------out DefinedGroupSort flag-------
2014-03-18 17:07:57,600 INFO com.mr.SecondSortMR: ---------enter reduce function flag---------
2014-03-18 17:07:57,600 INFO com.mr.SecondSortMR: reduce Input data:{[sort1,2],[1,2]}
2014-03-18 17:07:57,600 INFO com.mr.SecondSortMR: ---------out reduce function flag---------
2014-03-18 17:07:57,600 INFO com.mr.DefinedGroupSort: -------enter DefinedGroupSort flag-------
2014-03-18 17:07:57,600 INFO com.mr.DefinedGroupSort: -------Grouping result:0-------
2014-03-18 17:07:57,600 INFO com.mr.DefinedGroupSort: -------out DefinedGroupSort flag-------
2014-03-18 17:07:57,600 INFO com.mr.DefinedGroupSort: -------enter DefinedGroupSort flag-------
2014-03-18 17:07:57,600 INFO com.mr.DefinedGroupSort: -------Grouping result:0-------
2014-03-18 17:07:57,600 INFO com.mr.DefinedGroupSort: -------out DefinedGroupSort flag-------
2014-03-18 17:07:57,601 INFO com.mr.DefinedGroupSort: -------enter DefinedGroupSort flag-------
2014-03-18 17:07:57,601 INFO com.mr.DefinedGroupSort: -------Grouping result:-4-------
2014-03-18 17:07:57,601 INFO com.mr.DefinedGroupSort: -------out DefinedGroupSort flag-------
2014-03-18 17:07:57,601 INFO com.mr.SecondSortMR: ---------enter reduce function flag---------
2014-03-18 17:07:57,601 INFO com.mr.SecondSortMR: reduce Input data:{[sort2,77],[3,54,77]}
2014-03-18 17:07:57,601 INFO com.mr.SecondSortMR: ---------out reduce function flag---------
2014-03-18 17:07:57,601 INFO com.mr.DefinedGroupSort: -------enter DefinedGroupSort flag-------
2014-03-18 17:07:57,601 INFO com.mr.DefinedGroupSort: -------Grouping result:0-------
2014-03-18 17:07:57,601 INFO com.mr.DefinedGroupSort: -------out DefinedGroupSort flag-------
2014-03-18 17:07:57,601 INFO com.mr.DefinedGroupSort: -------enter DefinedGroupSort flag-------
2014-03-18 17:07:57,601 INFO com.mr.DefinedGroupSort: -------Grouping result:0-------
2014-03-18 17:07:57,601 INFO com.mr.DefinedGroupSort: -------out DefinedGroupSort flag-------
2014-03-18 17:07:57,601 INFO com.mr.SecondSortMR: ---------enter reduce function flag---------
2014-03-18 17:07:57,601 INFO com.mr.SecondSortMR: reduce Input data:{[sort6,221],[20,22,221]}
2014-03-18 17:07:57,601 INFO com.mr.SecondSortMR: ---------out reduce function flag---------
2014-03-18
17:07:57,641 INFO org.apache.hadoop.mapred.Task:
Task:attempt_201312292019_13586_r_000000_0 is done. And is in the
process of commiting
2014-03-18 17:08:00,668 INFO org.apache.hadoop.mapred.Task: Task attempt_201312292019_13586_r_000000_0 is allowed to commit now
2014-03-18
17:08:00,682 INFO
org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter: Saved output
of task 'attempt_201312292019_13586_r_000000_0' to
/user/hadoop/z.zeng/output23
2014-03-18 17:08:03,593 INFO org.apache.hadoop.mapred.Task: Task 'attempt_201312292019_13586_r_000000_0' done.
2014-03-18
17:08:03,596 INFO org.apache.hadoop.mapred.TaskLogsTruncater:
Initializing logs' truncater with mapRetainSize=-1 and
reduceRetainSize=-1
2014-03-18 17:08:03,615 INFO
org.apache.hadoop.io.nativeio.NativeIO: Initialized cache for UID to
User mapping with a cache timeout of 14400 seconds.
2014-03-18
17:08:03,615 INFO org.apache.hadoop.io.nativeio.NativeIO: Got UserName
hadoop for UID 1000 from the native implementation
首先,我们看了Reduce端的日志,第一个信息我应该能够很容易的看出来的,就是分组和reduce函数处理都是在shuffle完成之后才进行
的。另外一点我们也非常容易看出,就是每处理完一个分组数据就会去调用一次的reduce函对这个分组来进行处理和输出。此外,说明一下分组函数的返回值
问题,当返回值为0时候才会被分到同一个组当中。另外一点我们也可以看出来,一个分组中每合并n个值就会有n-1分组函数返回0值,也就是说有进行了n-
1次比较。
所以,中map端和reduce端的日志情况来看,MapReduce框架处理二次排序的总体流程正如我上面的图所画的,整一个流程是正确的。
六、总结
本文主要从MapReduce框架执行的流程,去分析了如何去实现二次排序,通过代码进行了实现,并且对整个流程进行了验证。另
外,要吐槽一下,网络上有很多文章都记录了MapReudce处理二次排序问题,但是对MapReduce框架整个处理流程的描述错漏很多,而且他们最终
的流程描述也没有证据可以支撑。所以,对于网络上的学习资源不能够完全依赖,要融入自己的思想,并且要重要的观点进行代码或者实践的验证。另外,今天在一
个hadoop交流群上听到少部分人在讨论,有了hive我们就不用学习些MapReduce程序?对这这个问题我是这么认为:我不相信写不好
MapReduce程序的程序员会写好hive语句,最起码的他们对整个执行流程是一无所知的,更不用说性能问题了,有可能连最常见的数据倾斜问题的弄不
清楚。
如果文章写的有问题,欢迎指出,共同学习!