spark配置ha(用zookeeper)

查看数: 20726 | 评论数: 20 | 收藏 0
关灯 | 提示:支持键盘翻页<-左 右->
    组图打开中,请稍候......
发布时间: 2016-5-17 14:57

正文摘要:

我用spark1.5.2配置ha,用的是zookeeper3.4.8的版本,安装官网的文档配置如下: export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=hadoopspark01:2181,hadoo ...

回复

linbowei 发表于 2016-6-2 09:04:10
xw2016 发表于 2016-6-1 16:25
看了你的文章:Possible gotcha: If you have multiple Masters in your cluster but fail to correctly  ...

通信应该是没问题的

xw2016 发表于 2016-6-1 16:25:21
linbowei 发表于 2016-6-1 15:34
http://blog.csdn.net/java_0605/article/details/51498208
你看看这个,我在vmware上成功的,但是在ope ...

看了你的文章:Possible gotcha: If you have multiple Masters in your cluster but fail to correctly configure the Masters to use ZooKeeper, the Masters will fail to discover each other and think they’re all leaders. This will not lead to a healthy cluster state (as all Masters will schedule independently).


这里说master之间不能互相发现,是不是通信有问题,检查下IP之类的。
linbowei 发表于 2016-6-1 15:34:50
xw2016 发表于 2016-6-1 12:55
我也搭建了基于zookeeper的standalone HA,回去试试有没这问题

http://blog.csdn.net/java_0605/article/details/51498208
你看看这个,我在vmware上成功的,但是在openstack的虚拟机上是失败的

xw2016 发表于 2016-6-1 12:55:13
我也搭建了基于zookeeper的standalone HA,回去试试有没这问题
xw2016 发表于 2016-6-1 12:53:47
看一下
xw2016 发表于 2016-5-30 12:06:28
没看懂
xw2016 发表于 2016-5-25 12:10:38
看看哈
xw2016 发表于 2016-5-24 12:29:26
先看看
linbowei 发表于 2016-5-18 18:13:34
langke93 发表于 2016-5-18 16:23
楼主下面内容核实下,是不是那里遗漏了

16/05/18 18:07:01 INFO Worker: hadoopspark01:7077 Disassociated !
16/05/18 18:07:01 ERROR Worker: Connection to master failed! Waiting for master to reconnect...
16/05/18 18:07:01 INFO Worker: Not spawning another attempt to register with the master, since there is an attempt scheduled already.
16/05/18 18:07:01 WARN Worker: Failed to connect to master hadoopspark01:7077
akka.actor.ActorNotFound: Actor not found for: ActorSelection[Anchor(akka.tcp://sparkMaster@hadoopspark01:7077/), Path(/user/Master)]
    at akka.actor.ActorSelection$$anonfun$resolveOne$1.apply(ActorSelection.scala:65)
    at akka.actor.ActorSelection$$anonfun$resolveOne$1.apply(ActorSelection.scala:63)
    at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)
    at akka.dispatch.BatchingExecutor$AbstractBatch.processBatch(BatchingExecutor.scala:55)
    at akka.dispatch.BatchingExecutor$Batch.run(BatchingExecutor.scala:73)
    at akka.dispatch.ExecutionContexts$sameThreadExecutionContext$.unbatchedExecute(Future.scala:74)
    at akka.dispatch.BatchingExecutor$class.execute(BatchingExecutor.scala:120)
    at akka.dispatch.ExecutionContexts$sameThreadExecutionContext$.execute(Future.scala:73)
    at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40)
    at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248)
    at akka.pattern.PromiseActorRef.$bang(AskSupport.scala:266)
    at akka.actor.EmptyLocalActorRef.specialHandle(ActorRef.scala:533)
    at akka.actor.DeadLetterActorRef.specialHandle(ActorRef.scala:569)
    at akka.actor.DeadLetterActorRef.$bang(ActorRef.scala:559)
    at akka.remote.RemoteActorRefProvider$RemoteDeadLetterActorRef.$bang(RemoteActorRefProvider.scala:91)
    at akka.actor.ActorRef.tell(ActorRef.scala:123)
    at akka.dispatch.Mailboxes$$anon$1$$anon$2.enqueue(Mailboxes.scala:44)
    at akka.dispatch.QueueBasedMessageQueue$class.cleanUp(Mailbox.scala:439)
    at akka.dispatch.UnboundedMailbox$MessageQueue.cleanUp(Mailbox.scala:559)
    at akka.dispatch.Mailbox.cleanUp(Mailbox.scala:310)
    at akka.dispatch.MessageDispatcher.unregister(AbstractDispatcher.scala:202)
    at akka.dispatch.MessageDispatcher.detach(AbstractDispatcher.scala:138)
    at akka.actor.dungeon.FaultHandling$class.akka$actor$dungeon$FaultHandling$$finishTerminate(FaultHandling.scala:212)
    at akka.actor.dungeon.FaultHandling$class.terminate(FaultHandling.scala:172)
    at akka.actor.ActorCell.terminate(ActorCell.scala:369)
    at akka.actor.ActorCell.invokeAll$1(ActorCell.scala:462)
    at akka.actor.ActorCell.systemInvoke(ActorCell.scala:478)
    at akka.dispatch.Mailbox.processAllSystemMessages(Mailbox.scala:263)
    at akka.dispatch.Mailbox.run(Mailbox.scala:219)
    at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:397)
    at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
    at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
    at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
    at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
16/05/18 18:07:13 INFO Worker: Retrying connection to master (attempt # 1)
16/05/18 18:07:13 INFO Worker: Connecting to master hadoopspark01:7077...
16/05/18 18:07:25 INFO Worker: Retrying connection to master (attempt # 2)
16/05/18 18:07:25 ERROR SparkUncaughtExceptionHandler: Uncaught exception in thread Thread[sparkWorker-akka.actor.default-dispatcher-2,5,main]
java.util.concurrent.RejectedExecutionException: Task java.util.concurrent.FutureTask@338b180b rejected from java.util.concurrent.ThreadPoolExecutor@70d7949c[Running, pool size = 1, active threads = 0, queued tasks = 0, completed tasks = 2]
    at java.util.concurrent.ThreadPoolExecutor$AbortPolicy.rejectedExecution(ThreadPoolExecutor.java:2048)
    at java.util.concurrent.ThreadPoolExecutor.reject(ThreadPoolExecutor.java:821)
    at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1372)
    at java.util.concurrent.AbstractExecutorService.submit(AbstractExecutorService.java:110)
    at org.apache.spark.deploy.worker.Worker$$anonfun$org$apache$spark$deploy$worker$Worker$$reregisterWithMaster$1.apply$mcV$sp(Worker.scala:269)
    at org.apache.spark.util.Utils$.tryOrExit(Utils.scala:1119)
    at org.apache.spark.deploy.worker.Worker.org$apache$spark$deploy$worker$Worker$$reregisterWithMaster(Worker.scala:234)
    at org.apache.spark.deploy.worker.Worker$$anonfun$receive$1.applyOrElse(Worker.scala:521)
    at org.apache.spark.rpc.akka.AkkaRpcEnv.org$apache$spark$rpc$akka$AkkaRpcEnv$$processMessage(AkkaRpcEnv.scala:177)
    at org.apache.spark.rpc.akka.AkkaRpcEnv$$anonfun$actorRef$lzycompute$1$1$$anon$1$$anonfun$receiveWithLogging$1$$anonfun$applyOrElse$4.apply$mcV$sp(AkkaRpcEnv.scala:126)
    at org.apache.spark.rpc.akka.AkkaRpcEnv.org$apache$spark$rpc$akka$AkkaRpcEnv$$safelyCall(AkkaRpcEnv.scala:197)
    at org.apache.spark.rpc.akka.AkkaRpcEnv$$anonfun$actorRef$lzycompute$1$1$$anon$1$$anonfun$receiveWithLogging$1.applyOrElse(AkkaRpcEnv.scala:125)
    at scala.runtime.AbstractPartialFunction$mcVL$sp.apply$mcVL$sp(AbstractPartialFunction.scala:33)
    at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:33)
    at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:25)
    at org.apache.spark.util.ActorLogReceive$$anon$1.apply(ActorLogReceive.scala:59)
    at org.apache.spark.util.ActorLogReceive$$anon$1.apply(ActorLogReceive.scala:42)
    at scala.PartialFunction$class.applyOrElse(PartialFunction.scala:118)
    at org.apache.spark.util.ActorLogReceive$$anon$1.applyOrElse(ActorLogReceive.scala:42)
    at akka.actor.Actor$class.aroundReceive(Actor.scala:467)
    at org.apache.spark.rpc.akka.AkkaRpcEnv$$anonfun$actorRef$lzycompute$1$1$$anon$1.aroundReceive(AkkaRpcEnv.scala:92)
    at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516)
    at akka.actor.ActorCell.invoke(ActorCell.scala:487)
    at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:238)
    at akka.dispatch.Mailbox.run(Mailbox.scala:220)
    at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:397)
    at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
    at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
    at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
    at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
16/05/18 18:07:25 INFO ShutdownHookManager: Shutdown hook called
这是日志,帮忙看看,问题在哪里?

关闭

推荐上一条 /2 下一条