分享

深度学习:LSTM原理及实现【附源码】


问题导读
1.什么是LSTM?
2.LSTM核心思想是什么?
3.如何理解LSTM?


LSTM网络
long short term memory,即我们所称呼的LSTM,是为了解决长期以来问题而专门设计出来的,所有的RNN都具有一种重复神经网络模块的链式形式。在标准RNN中,这个重复的结构模块只有一个非常简单的结构,例如一个tanh层。

1.jpg

LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。

1.jpg

不必担心这里的细节。我们会一步一步地剖析 LSTM 解析图。现在,我们先来熟悉一下图中使用的各种元素的图标。

2.jpg

在上面的图例中,每一条黑线传输着一整个向量,从一个节点的输出到其他节点的输入。粉色的圈代表 pointwise 的操作,诸如向量的和,而黄色的矩阵就是学习到的神经网络层。合在一起的线表示向量的连接,分开的线表示内容被复制,然后分发到不同的位置。

LSTM核心思想
LSTM的关键在于细胞的状态整个(绿色的图表示的是一个cell),和穿过细胞的那条水平线。

细胞状态类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。

3.jpg

若只有上面的那条水平线是没办法实现添加或者删除信息的。而是通过一种叫做 门(gates) 的结构来实现的。

门 可以实现选择性地让信息通过,主要是通过一个 sigmoid 的神经层 和一个逐点相乘的操作来实现的。

4.jpg

sigmoid 层输出(是一个向量)的每个元素都是一个在 0 和 1 之间的实数,表示让对应信息通过的权重(或者占比)。比如, 0 表示“不让任何信息通过”, 1 表示“让所有信息通过”。

LSTM通过三个这样的本结构来实现信息的保护和控制。这三个门分别输入门、遗忘门和输出门。

逐步理解LSTM
现在我们就开始通过三个门逐步的了解LSTM的原理

遗忘门
1.png
让我们回到语言模型的例子中来基于已经看到的预测下一个词。在这个问题中,细胞状态可能包含当前主语的性别,因此正确的代词可以被选择出来。当我们看到新的主语,我们希望忘记旧的主语。



5.jpg

6.png

输入门
7.png

8.jpg
9.png
10.jpg


输出门
最终,我们需要确定输出什么值。这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。首先,我们运行一个 sigmoid 层来确定细胞状态的哪个部分将输出出去。接着,我们把细胞状态通过 tanh 进行处理(得到一个在 -1 到 1 之间的值)并将它和 sigmoid 门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。

在语言模型的例子中,因为他就看到了一个 代词,可能需要输出与一个 动词 相关的信息。例如,可能输出是否代词是单数还是负数,这样如果是动词的话,我们也知道动词需要进行的词形变化。
11.jpg


LSTM变体
原文这部分介绍了 LSTM 的几个变种,还有这些变形的作用。在这里我就不再写了。有兴趣的可以直接阅读原文。

下面主要讲一下其中比较著名的变种 GRU(Gated Recurrent Unit ),这是由 Cho, et al. (2014) 提出。在 GRU 中,如下图所示,只有两个门:重置门(reset gate)和更新门(update gate)。同时在这个结构中,把细胞状态和隐藏状态进行了合并。最后模型比标准的 LSTM 结构要简单,而且这个结构后来也非常流行。
12.jpg


13.png

多层LSTM
**多层LSTM是将LSTM进行叠加,其优点是能够在高层更抽象的表达特征,并且减少神经元的个数,增加识别准确率并且降低训练时间。**具体信息参考[3]

LSTM实现手写数字
这里我们利用的数据集是tensorflow提供的一个手写数字数据集。该数据集是一个包含n张28*28的数据集。


设置LSTM参数

[mw_shl_code=python,true]# -*- coding: utf-8 -*-
import tensorflow as tf
from tensorflow.contrib import rnn

import numpy as np
import input_data

# configuration
#                        O * W + b -> 10 labels for each image, O[? 28], W[28 10], B[10]
#                       ^ (O: output 28 vec from 28 vec input)
#                       |
#      +-+  +-+       +--+
#      |1|->|2|-> ... |28| time_step_size = 28
#      +-+  +-+       +--+
#       ^    ^    ...  ^
#       |    |         |
# img1:[28] [28]  ... [28]
# img2:[28] [28]  ... [28]
# img3:[28] [28]  ... [28]
# ...
# img128 or img256 (batch_size or test_size 256)
#      each input size = input_vec_size=lstm_size=28

# configuration variables
input_vec_size = lstm_size = 28 # 输入向量的维度
time_step_size = 28 # 循环层长度

batch_size = 128
test_size = 256
[/mw_shl_code]
这里设置将batch_size设置为128,time_step_size表示的是lstm神经元的个数,这里设置为28个(和图片的尺寸有关?),input_vec_size表示一次输入的像素数。


初始化权值参数

[mw_shl_code=python,true]def init_weights(shape):
    return tf.Variable(tf.random_normal(shape, stddev=0.01))

def model(X, W, B, lstm_size):
    # X, input shape: (batch_size, time_step_size, input_vec_size)
    # XT shape: (time_step_size, batch_size, input_vec_size)
    #对这一步操作还不是太理解,为什么需要将第一行和第二行置换
    XT = tf.transpose(X, [1, 0, 2])  # permute time_step_size and batch_size,[28, 128, 28]
    # XR shape: (time_step_size * batch_size, input_vec_size)
    XR = tf.reshape(XT, [-1, lstm_size]) # each row has input for each lstm cell (lstm_size=input_vec_size)

    # Each array shape: (batch_size, input_vec_size)
    X_split = tf.split(XR, time_step_size, 0) # split them to time_step_size (28 arrays),shape = [(128, 28),(128, 28)...]
    # Make lstm with lstm_size (each input vector size). num_units=lstm_size; forget_bias=1.0
    lstm = rnn.BasicLSTMCell(lstm_size, forget_bias=1.0, state_is_tuple=True)

    # Get lstm cell output, time_step_size (28) arrays with lstm_size output: (batch_size, lstm_size)
    # rnn..static_rnn()的输出对应于每一个timestep,如果只关心最后一步的输出,取outputs[-1]即可
    outputs, _states = rnn.static_rnn(lstm, X_split, dtype=tf.float32)  # 时间序列上每个Cell的输出:[... shape=(128, 28)..]
    # tanh activation
    # Get the last output
    return tf.matmul(outputs[-1], W) + B, lstm.state_size # State size to initialize the state
[/mw_shl_code]
init_weigths函数利用正态分布随机生成参数的初始值,model的四个参数分别为:X为输入的数据,W表示的是28 * 10的权值(标签为0-9),B表示的是偏置,维度和W一样。这里首先将一批128*(28*28)的图片放进神经网络。然后进行相关的操作(注释已经写得很明白了,这里就不再赘述),然后利用WX+B求出预测结果,同时返回lstm的尺寸


训练
[mw_shl_code=python,true]py_x, state_size = model(X, W, B, lstm_size)

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y))
train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost)
[/mw_shl_code]
然后通过交叉熵计算误差,反复训练得到最优值。


源代码:
https://github.com/geroge-gao/deeplearning/tree/master/LSTM

最新经典文章,欢迎关注公众号

原文链接:
https://blog.csdn.net/gzj_1101/article/details/79376798?from=singlemessage

已有(1)人评论

跳转到指定楼层
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

推荐上一条 /2 下一条