分享

用 Python 和 OpenCV 检测图片上的条形码

问题导读
1、什么是OpenCV ?
2、如何用 Python 和 OpenCV 检测图片上的条形码?
3、实现一个更加鲁棒的条形码检测算法,需要考虑哪些?





更新:
这篇文章的介绍看起来有点“离题”,某些方面是因为在写文章之前,我刚看完《南方公园黑色星期五》,所以我肯定在僵尸购物者、黑色星期五的混乱和《权利的游戏》中得到一些灵感。

黑色星期五要来了。

疯狂的消费者成群结队,中西部的中年女性蜂拥而出,露出没有牙齿的嗜血牙龈,直奔当地沃尔玛75%折扣的最新一季的《权利的游戏》。

感恩节之夜,他们将在沃尔玛门外排起长队,团结在一起,用他们的双手和头部,击打紧锁的大门,直到身体鲜血淋淋,就像《惊变28天》中的僵尸一样,只不过不是为了肉身,他们渴望小小的消费寄托,他们的战争呐喊着折扣,销售额将会上升到极点,他们雷鸣般的脚步造成整个大平原的地震。

当然,媒体也无济于事,他们将危言耸听每一个小场景。从冻伤的家庭在寒风中露营整晚,到瞒姗老太在大门打开后被蜂拥而入的低价抢购人群踩踏,就像侏罗纪公园中似鸡龙的蹂躏。这所有的一切只是因为她想为9岁的孙女蒂米买到最新的光晕游戏,而蒂米的父母,在去年的这个时候离世了,就在沃尔玛,在这黑色星期五。
1.jpg


我不得不问,所有的这些混乱值得么?
见鬼,当然不。
我在这个黑色星期五时的购物都是在网上完成的,就像用一杯咖啡和少量泰诺(Tylenol)护理宿醉一样。
但是如果你决定外出到现实世界勇敢地低价抢购,你会想先下载本文附带的源码。
想象一下你会觉得多么愚蠢,排队,等待结账,只是为了扫描一下最新一季的《权利的游戏》上的条形码,然后查明它便宜了5美元。
接下来,我将展示给你怎样仅仅通过Python和Opencv,来检测图片中的条形码。

用 Python 和 OpenCV 检测图片上的的条形码

这篇博文的目的是应用计算机视觉和图像处理技术,展示一个条形码检测的基本实现。我所实现的算法本质上基于StackOverflow 上的这个问题,浏览代码之后,我提供了一些对原始算法的更新和改进。

首先需要留意的是,这个算法并不是对所有条形码有效,但会给你基本的关于应用什么类型的技术的直觉。

假设我们要检测下图中的条形码:
2.jpg


图1:包含条形码的示例图片

现在让我们开始写点代码,新建一个文件,命名为detect_barcode.py,打开并编码:
  1. # import the necessary packages
  2. import numpy as np
  3. import argparse
  4. import cv2
  5. # construct the argument parse and parse the arguments
  6. ap = argparse.ArgumentParser()
  7. ap.add_argument("-i", "--image", required = True, help = "path to the image file")
  8. args = vars(ap.parse_args())
复制代码

我们首先做的是导入所需的软件包,我们将使用NumPy做数值计算,argparse用来解析命令行参数,cv2是OpenCV的绑定。

然后我们设置命令行参数,我们这里需要一个简单的选择,–image是指包含条形码的待检测图像文件的路径。

现在开始真正的图像处理:
  1. # load the image and convert it to grayscale
  2. image = cv2.imread(args["image"])
  3. gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
  4. # compute the Scharr gradient magnitude representation of the images
  5. # in both the x and y direction
  6. gradX = cv2.Sobel(gray, ddepth = cv2.cv.CV_32F, dx = 1, dy = 0, ksize = -1)
  7. gradY = cv2.Sobel(gray, ddepth = cv2.cv.CV_32F, dx = 0, dy = 1, ksize = -1)
  8. # subtract the y-gradient from the x-gradient
  9. gradient = cv2.subtract(gradX, gradY)
  10. gradient = cv2.convertScaleAbs(gradient)
复制代码

从磁盘载入图像并转换为灰度图。
使用Scharr操作(指定使用ksize = -1)构造灰度图在水平和竖直方向上的梯度幅值表示。
Scharr操作之后,我们从x-gradient中减去y-gradient,通过这一步减法操作,最终得到包含高水平梯度和低竖直梯度的图像区域。
上面的gradient表示的原始图像看起来是这样的:
3.jpg

图:2:条形码图像的梯度表示

注意条形码区域是怎样通过梯度操作检测出来的。下一步将通过去噪仅关注条形码区域。
  1. # blur and threshold the image
  2. blurred = cv2.blur(gradient, (9, 9))
  3. (_, thresh) = cv2.threshold(blurred, 225, 255, cv2.THRESH_BINARY)
复制代码

我们要做的第一件事是使用9*9的内核对梯度图进行平均模糊,这将有助于平滑梯度表征的图形中的高频噪声。
然后我们将模糊化后的图形进行二值化,梯度图中任何小于等于255的像素设为0(黑色),其余设为255(白色)。
模糊并二值化后的输出看起来是这个样子:
1.jpg

图3:二值化梯度图以此获得长方形条形码区域的粗略近似

然而,如你所见,在上面的二值化图像中,条形码的竖杠之间存在缝隙,为了消除这些缝隙,并使我们的算法更容易检测到条形码中的“斑点”状区域,我们需要进行一些基本的形态学操作:
  1. # construct a closing kernel and apply it to the thresholded image
  2. kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (21, 7))
  3. closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
复制代码

我们首先使用cv2.getStructuringElement构造一个长方形内核。这个内核的宽度大于长度,因此我们可以消除条形码中垂直条之间的缝隙。
这里进行形态学操作,将上一步得到的内核应用到我们的二值图中,以此来消除竖杠间的缝隙。
现在,你可以看到这些缝隙相比上面的二值化图像基本已经消除:
2.jpg

图4:使用形态学中的闭运算消除条形码竖条之间的缝隙

当然,现在图像中还有一些小斑点,不属于真正条形码的一部分,但是可能影响我们的轮廓检测。

让我们来消除这些小斑点:
  1. # perform a series of erosions and dilations
  2. closed = cv2.erode(closed, None, iterations = 4)
  3. closed = cv2.dilate(closed, None, iterations = 4)
复制代码

我们这里所做的是首先进行4次腐蚀(erosion),然后进行4次膨胀(dilation)。腐蚀操作将会腐蚀图像中白色像素,以此来消除小斑点,而膨胀操作将使剩余的白色像素扩张并重新增长回去。
如果小斑点在腐蚀操作中被移除,那么在膨胀操作中就不会再出现。
经过我们这一系列的腐蚀和膨胀操作,可以看到我们已经成功地移除小斑点并得到条形码区域。
3.jpg

图5:应用一系列的腐蚀和膨胀来移除不相关的小斑点

最后,让我们找到图像中条形码的轮廓:
  1. # find the contours in the thresholded image, then sort the contours
  2. # by their area, keeping only the largest one
  3. (cnts, _) = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL,
  4.   cv2.CHAIN_APPROX_SIMPLE)
  5. c = sorted(cnts, key = cv2.contourArea, reverse = True)[0]
  6. # compute the rotated bounding box of the largest contour
  7. rect = cv2.minAreaRect(c)
  8. box = np.int0(cv2.cv.BoxPoints(rect))
  9. # draw a bounding box arounded the detected barcode and display the
  10. # image
  11. cv2.drawContours(image, [box], -1, (0, 255, 0), 3)
  12. cv2.imshow("Image", image)
  13. cv2.waitKey(0)
复制代码

幸运的是这一部分比较容易,我们简单地找到图像中的最大轮廓,如果我们正确完成了图像处理步骤,这里应该对应于条形码区域。
然后我们为最大轮廓确定最小边框
最后显示检测到的条形码
正如你在下面的图片中所见,我们已经成功检测到了条形码:
1.jpg

图6:成功检测到示例图像中的条形码
下一部分,我们将尝试更多图像。

成功的条形码检测
要跟随这些结果,请使用文章下面的表单去下载本文的源码以及随带的图片。
一旦有了代码和图像,打开一个终端来执行下面的命令:
  1. $ python detect_barcode.py --image images/barcode_02.jpg
复制代码

2.jpg

图7:使用OpenCV检测图像中的一个条形码

检测椰油瓶子上的条形码没有问题。
让我们试下另外一张图片:
  1. $ python detect_barcode.py --image images/barcode_03.jpg
复制代码
1.jpg

图8:使用计算机视觉检测图像中的一个条形码

我们同样能够在上面的图片中找到条形码。
关于食品的条形码检测已经足够了,书本上的条形码怎么样呢:
  1. $ python detect_barcode.py --image images/barcode_04.jpg
复制代码
1.jpg

图9:使用Python和OpenCV检测书本上的条形码

没问题,再次通过。
那包裹上的跟踪码呢?
  1. $ python detect_barcode.py --image images/barcode_05.jpg
复制代码
1.jpg

图10:使用计算机视觉和图像处理检测包裹上的条形码

我们的算法再次成功检测到条形码。
最后,我们再尝试一张图片,这个是我最爱的意大利面酱—饶氏自制伏特加酱(Rao’s Homemade Vodka Sauce):
  1. $ python detect_barcode.py --image images/barcode_06.jpg
复制代码
1.jpg

图11:使用Python和Opencv很容易检测条形码
我们的算法又一次检测到条形码!

总结
这篇博文中,我们回顾了使用计算机视觉技术检测图像中条形码的必要步骤,使用Python编程语言和OpenCV库实现了我们的算法。

算法概要如下:
计算x方向和y方向上的Scharr梯度幅值表示
将x-gradient减去y-gradient来显示条形码区域
模糊并二值化图像
对二值化图像应用闭运算内核
进行系列的腐蚀、膨胀
找到图像中的最大轮廓,大概便是条形码
需要注意的是,该方法做了关于图像梯度表示的假设,因此只对水平条形码有效。

如果你想实现一个更加鲁棒的条形码检测算法,你需要考虑图像的方向,或者更好的,应用机器学习技术如Haar级联或者HOG + Linear SVM去扫描图像条形码区域。


源码下载:about云

没找到任何评论,期待你打破沉寂

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

推荐上一条 /2 下一条