分享

Spark:用Scala和Java实现WordCount



问题导读:
1. 如何使用IDEA?
2.用java编写spark程序?
3.Spark实现wordcount?










为了在IDEA中编写scala,今天安装配置学习了IDEA集成开发环境。IDEA确实很优秀,学会之后,用起来很顺手。关于如何搭建scala和IDEA开发环境,请看文末的参考资料。

用Scala和Java实现WordCount,其中Java实现的JavaWordCount是spark自带的例子($SPARK_HOME/examples/src/main/java/org/apache/spark/examples/JavaWordCount.java)


1.环境
  • OS:Red Hat Enterprise Linux Server release 6.4 (Santiago)
  • Hadoop:Hadoop 2.4.1
  • JDK:1.7.0_60
  • Spark:1.1.0
  • Scala:2.11.2
  • 集成开发环境:IntelliJ IDEA 13.1.3
注意:需要在客户端windows环境下安装IDEA、Scala、JDK,并且为IDEA下载scala插件。


2.Scala实现单词计数
  1. 1 package com.hq
  2. 2
  3. 3 /**
  4. 4  * User: hadoop
  5. 5  * Date: 2014/10/10 0010
  6. 6  * Time: 18:59
  7. 7  */
  8. 8 import org.apache.spark.SparkConf
  9. 9 import org.apache.spark.SparkContext
  10. 10 import org.apache.spark.SparkContext._
  11. 11
  12. 12 /**
  13. 13  * 统计字符出现次数
  14. 14  */
  15. 15 object WordCount {
  16. 16   def main(args: Array[String]) {
  17. 17     if (args.length < 1) {
  18. 18       System.err.println("Usage: <file>")
  19. 19       System.exit(1)
  20. 20     }
  21. 21
  22. 22     val conf = new SparkConf()
  23. 23     val sc = new SparkContext(conf)
  24. 24     val line = sc.textFile(args(0))
  25. 25
  26. 26     line.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_).collect().foreach(println)
  27. 27
  28. 28     sc.stop()
  29. 29   }
  30. 30 }
复制代码




3.Java实现单词计数
  1. 1 package com.hq;
  2. 2
  3. 3 /**
  4. 4  * User: hadoop
  5. 5  * Date: 2014/10/10 0010
  6. 6  * Time: 19:26
  7. 7  */
  8. 8
  9. 9 import org.apache.spark.SparkConf;
  10. 10 import org.apache.spark.api.java.JavaPairRDD;
  11. 11 import org.apache.spark.api.java.JavaRDD;
  12. 12 import org.apache.spark.api.java.JavaSparkContext;
  13. 13 import org.apache.spark.api.java.function.FlatMapFunction;
  14. 14 import org.apache.spark.api.java.function.Function2;
  15. 15 import org.apache.spark.api.java.function.PairFunction;
  16. 16 import scala.Tuple2;
  17. 17
  18. 18 import java.util.Arrays;
  19. 19 import java.util.List;
  20. 20 import java.util.regex.Pattern;
  21. 21
  22. 22 public final class JavaWordCount {
  23. 23   private static final Pattern SPACE = Pattern.compile(" ");
  24. 24
  25. 25   public static void main(String[] args) throws Exception {
  26. 26
  27. 27     if (args.length < 1) {
  28. 28       System.err.println("Usage: JavaWordCount <file>");
  29. 29       System.exit(1);
  30. 30     }
  31. 31
  32. 32     SparkConf sparkConf = new SparkConf().setAppName("JavaWordCount");
  33. 33     JavaSparkContext ctx = new JavaSparkContext(sparkConf);
  34. 34     JavaRDD<String> lines = ctx.textFile(args[0], 1);
  35. 35
  36. 36     JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
  37. 37       @Override
  38. 38       public Iterable<String> call(String s) {
  39. 39         return Arrays.asList(SPACE.split(s));
  40. 40       }
  41. 41     });
  42. 42
  43. 43     JavaPairRDD<String, Integer> ones = words.mapToPair(new PairFunction<String, String, Integer>() {
  44. 44       @Override
  45. 45       public Tuple2<String, Integer> call(String s) {
  46. 46         return new Tuple2<String, Integer>(s, 1);
  47. 47       }
  48. 48     });
  49. 49
  50. 50     JavaPairRDD<String, Integer> counts = ones.reduceByKey(new Function2<Integer, Integer, Integer>() {
  51. 51       @Override
  52. 52       public Integer call(Integer i1, Integer i2) {
  53. 53         return i1 + i2;
  54. 54       }
  55. 55     });
  56. 56
  57. 57     List<Tuple2<String, Integer>> output = counts.collect();
  58. 58     for (Tuple2<?, ?> tuple : output) {
  59. 59       System.out.println(tuple._1() + ": " + tuple._2());
  60. 60     }
  61. 61     ctx.stop();
  62. 62   }
  63. 63 }
复制代码



4.IDEA打包和运行

4.1 IDEA的工程结构
在IDEA中建立Scala工程,并导入spark api编程jar包(spark-assembly-1.1.0-hadoop2.4.0.jar:$SPARK_HOME/lib/里面)
3-1.png



4.2 打成jar包
File ---> Project Structure
3-2.png



配置完成后,在菜单栏中选择Build->Build Artifacts...,然后使用Build等命令打包。打包完成后会在状态栏中显示“Compilation completed successfully...”的信息,去jar包输出路径下查看jar包,如下所示。

3-3.png


ScalaTest1848.jar就是我们编程所产生的jar包,里面包含了三个类HelloWord、WordCount、JavaWordCount。
可以用这个jar包在spark集群里面运行java或者scala的单词计数程序。

4.3 以Spark集群standalone方式运行单词计数
上传jar包到服务器,并放置在/home/ebupt/test/WordCount.jar路径下。
上传一个text文本文件到HDFS作为单词计数的输入文件:hdfs://eb170:8020/user/ebupt/text
内容如下
  1. 1 import org apache spark api java JavaPairRDD   
  2. 2 import org apache spark api java JavaRDD   
  3. 3 import org apache spark api java JavaSparkContext   
  4. 4 import org apache spark api java function FlatMapFunction   
  5. 5 import org apache spark api java function Function   
  6. 6 import org apache spark api java function Function2   
  7. 7 import org apache spark api java function PairFunction   
  8. 8 import scala Tuple2
复制代码



用spark-submit命令提交任务运行,具体使用查看:spark-submit --help
  1. 1 [ebupt@eb174 bin]$ spark-submit --help
  2. 2 Spark assembly has been built with Hive, including Datanucleus jars on classpath
  3. 3 Usage: spark-submit [options] <app jar | python file> [app options]
  4. 4 Options:
  5. 5   --master MASTER_URL         spark://host:port, mesos://host:port, yarn, or local.
  6. 6   --deploy-mode DEPLOY_MODE   Whether to launch the driver program locally ("client") or
  7. 7                               on one of the worker machines inside the cluster ("cluster")
  8. 8                               (Default: client).
  9. 9   --class CLASS_NAME          Your application's main class (for Java / Scala apps).
  10. 10   --name NAME                 A name of your application.
  11. 11   --jars JARS                 Comma-separated list of local jars to include on the driver
  12. 12                               and executor classpaths.
  13. 13   --py-files PY_FILES         Comma-separated list of .zip, .egg, or .py files to place
  14. 14                               on the PYTHONPATH for Python apps.
  15. 15   --files FILES               Comma-separated list of files to be placed in the working
  16. 16                               directory of each executor.
  17. 17
  18. 18   --conf PROP=VALUE           Arbitrary Spark configuration property.
  19. 19   --properties-file FILE      Path to a file from which to load extra properties. If not
  20. 20                               specified, this will look for conf/spark-defaults.conf.
  21. 21
  22. 22   --driver-memory MEM         Memory for driver (e.g. 1000M, 2G) (Default: 512M).
  23. 23   --driver-java-options       Extra Java options to pass to the driver.
  24. 24   --driver-library-path       Extra library path entries to pass to the driver.
  25. 25   --driver-class-path         Extra class path entries to pass to the driver. Note that
  26. 26                               jars added with --jars are automatically included in the
  27. 27                               classpath.
  28. 28
  29. 29   --executor-memory MEM       Memory per executor (e.g. 1000M, 2G) (Default: 1G).
  30. 30
  31. 31   --help, -h                  Show this help message and exit
  32. 32   --verbose, -v               Print additional debug output
  33. 33
  34. 34  Spark standalone with cluster deploy mode only:
  35. 35   --driver-cores NUM          Cores for driver (Default: 1).
  36. 36   --supervise                 If given, restarts the driver on failure.
  37. 37
  38. 38  Spark standalone and Mesos only:
  39. 39   --total-executor-cores NUM  Total cores for all executors.
  40. 40
  41. 41  YARN-only:
  42. 42   --executor-cores NUM        Number of cores per executor (Default: 1).
  43. 43   --queue QUEUE_NAME          The YARN queue to submit to (Default: "default").
  44. 44   --num-executors NUM         Number of executors to launch (Default: 2).
  45. 45   --archives ARCHIVES         Comma separated list of archives to be extracted into the
  46. 46                               working directory of each executor.
复制代码




①提交scala实现的单词计数:

  1. [ebupt@eb174 test]$ spark-submit --master spark://eb174:7077 --name WordCountByscala --class com.hq.WordCount --executor-memory 1G --total-executor-cores 2 ~/test/WordCount.jar hdfs://eb170:8020/user/ebupt/text
复制代码



②提交java实现的单词计数:

  1. [ebupt@eb174 test]$ spark-submit --master spark://eb174:7077 --name JavaWordCountByHQ --class com.hq.JavaWordCount --executor-memory 1G --total-executor-cores 2 ~/test/WordCount.jar hdfs://eb170:8020/user/ebupt/text
复制代码



③2者运行结果类似,所以只写了一个:
  1. 1 Spark assembly has been built with Hive, including Datanucleus jars on classpath
  2.   2 Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
  3.   3 14/10/10 19:24:51 INFO SecurityManager: Changing view acls to: ebupt,
  4.   4 14/10/10 19:24:51 INFO SecurityManager: Changing modify acls to: ebupt,
  5.   5 14/10/10 19:24:51 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(ebupt, ); users with modify permissions: Set(ebupt, )
  6.   6 14/10/10 19:24:52 INFO Slf4jLogger: Slf4jLogger started
  7.   7 14/10/10 19:24:52 INFO Remoting: Starting remoting
  8.   8 14/10/10 19:24:52 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@eb174:56344]
  9.   9 14/10/10 19:24:52 INFO Remoting: Remoting now listens on addresses: [akka.tcp://sparkDriver@eb174:56344]
  10. 10 14/10/10 19:24:52 INFO Utils: Successfully started service 'sparkDriver' on port 56344.
  11. 11 14/10/10 19:24:52 INFO SparkEnv: Registering MapOutputTracker
  12. 12 14/10/10 19:24:52 INFO SparkEnv: Registering BlockManagerMaster
  13. 13 14/10/10 19:24:52 INFO DiskBlockManager: Created local directory at /tmp/spark-local-20141010192452-3398
  14. 14 14/10/10 19:24:52 INFO Utils: Successfully started service 'Connection manager for block manager' on port 41110.
  15. 15 14/10/10 19:24:52 INFO ConnectionManager: Bound socket to port 41110 with id = ConnectionManagerId(eb174,41110)
  16. 16 14/10/10 19:24:52 INFO MemoryStore: MemoryStore started with capacity 265.4 MB
  17. 17 14/10/10 19:24:52 INFO BlockManagerMaster: Trying to register BlockManager
  18. 18 14/10/10 19:24:52 INFO BlockManagerMasterActor: Registering block manager eb174:41110 with 265.4 MB RAM
  19. 19 14/10/10 19:24:52 INFO BlockManagerMaster: Registered BlockManager
  20. 20 14/10/10 19:24:52 INFO HttpFileServer: HTTP File server directory is /tmp/spark-8051667e-bfdb-4ecd-8111-52992b16bb13
  21. 21 14/10/10 19:24:52 INFO HttpServer: Starting HTTP Server
  22. 22 14/10/10 19:24:52 INFO Utils: Successfully started service 'HTTP file server' on port 48233.
  23. 23 14/10/10 19:24:53 INFO Utils: Successfully started service 'SparkUI' on port 4040.
  24. 24 14/10/10 19:24:53 INFO SparkUI: Started SparkUI at http://eb174:4040
  25. 25 14/10/10 19:24:53 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
  26. 26 14/10/10 19:24:53 INFO SparkContext: Added JAR file:/home/ebupt/test/WordCountByscala.jar at http://10.1.69.174:48233/jars/WordCountByscala.jar with timestamp 1412940293532
  27. 27 14/10/10 19:24:53 INFO AppClient$ClientActor: Connecting to master spark://eb174:7077...
  28. 28 14/10/10 19:24:53 INFO SparkDeploySchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0
  29. 29 14/10/10 19:24:53 INFO MemoryStore: ensureFreeSpace(163705) called with curMem=0, maxMem=278302556
  30. 30 14/10/10 19:24:53 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 159.9 KB, free 265.3 MB)
  31. 31 14/10/10 19:24:53 INFO SparkDeploySchedulerBackend: Connected to Spark cluster with app ID app-20141010192453-0009
  32. 32 14/10/10 19:24:53 INFO AppClient$ClientActor: Executor added: app-20141010192453-0009/0 on worker-20141008204132-eb176-49618 (eb176:49618) with 1 cores
  33. 33 14/10/10 19:24:53 INFO SparkDeploySchedulerBackend: Granted executor ID app-20141010192453-0009/0 on hostPort eb176:49618 with 1 cores, 1024.0 MB RAM
  34. 34 14/10/10 19:24:53 INFO AppClient$ClientActor: Executor added: app-20141010192453-0009/1 on worker-20141008204132-eb175-56337 (eb175:56337) with 1 cores
  35. 35 14/10/10 19:24:53 INFO SparkDeploySchedulerBackend: Granted executor ID app-20141010192453-0009/1 on hostPort eb175:56337 with 1 cores, 1024.0 MB RAM
  36. 36 14/10/10 19:24:53 INFO AppClient$ClientActor: Executor updated: app-20141010192453-0009/0 is now RUNNING
  37. 37 14/10/10 19:24:53 INFO AppClient$ClientActor: Executor updated: app-20141010192453-0009/1 is now RUNNING
  38. 38 14/10/10 19:24:53 INFO MemoryStore: ensureFreeSpace(12633) called with curMem=163705, maxMem=278302556
  39. 39 14/10/10 19:24:53 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 12.3 KB, free 265.2 MB)
  40. 40 14/10/10 19:24:53 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on eb174:41110 (size: 12.3 KB, free: 265.4 MB)
  41. 41 14/10/10 19:24:53 INFO BlockManagerMaster: Updated info of block broadcast_0_piece0
  42. 42 14/10/10 19:24:54 INFO FileInputFormat: Total input paths to process : 1
  43. 43 14/10/10 19:24:54 INFO SparkContext: Starting job: collect at WordCount.scala:26
  44. 44 14/10/10 19:24:54 INFO DAGScheduler: Registering RDD 3 (map at WordCount.scala:26)
  45. 45 14/10/10 19:24:54 INFO DAGScheduler: Got job 0 (collect at WordCount.scala:26) with 2 output partitions (allowLocal=false)
  46. 46 14/10/10 19:24:54 INFO DAGScheduler: Final stage: Stage 0(collect at WordCount.scala:26)
  47. 47 14/10/10 19:24:54 INFO DAGScheduler: Parents of final stage: List(Stage 1)
  48. 48 14/10/10 19:24:54 INFO DAGScheduler: Missing parents: List(Stage 1)
  49. 49 14/10/10 19:24:54 INFO DAGScheduler: Submitting Stage 1 (MappedRDD[3] at map at WordCount.scala:26), which has no missing parents
  50. 50 14/10/10 19:24:54 INFO MemoryStore: ensureFreeSpace(3400) called with curMem=176338, maxMem=278302556
  51. 51 14/10/10 19:24:54 INFO MemoryStore: Block broadcast_1 stored as values in memory (estimated size 3.3 KB, free 265.2 MB)
  52. 52 14/10/10 19:24:54 INFO MemoryStore: ensureFreeSpace(2082) called with curMem=179738, maxMem=278302556
  53. 53 14/10/10 19:24:54 INFO MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 2.0 KB, free 265.2 MB)
  54. 54 14/10/10 19:24:54 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on eb174:41110 (size: 2.0 KB, free: 265.4 MB)
  55. 55 14/10/10 19:24:54 INFO BlockManagerMaster: Updated info of block broadcast_1_piece0
  56. 56 14/10/10 19:24:54 INFO DAGScheduler: Submitting 2 missing tasks from Stage 1 (MappedRDD[3] at map at WordCount.scala:26)
  57. 57 14/10/10 19:24:54 INFO TaskSchedulerImpl: Adding task set 1.0 with 2 tasks
  58. 58 14/10/10 19:24:56 INFO SparkDeploySchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor@eb176:35482/user/Executor#1456950111] with ID 0
  59. 59 14/10/10 19:24:56 INFO TaskSetManager: Starting task 0.0 in stage 1.0 (TID 0, eb176, ANY, 1238 bytes)
  60. 60 14/10/10 19:24:56 INFO SparkDeploySchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor@eb175:35502/user/Executor#-1231100997] with ID 1
  61. 61 14/10/10 19:24:56 INFO TaskSetManager: Starting task 1.0 in stage 1.0 (TID 1, eb175, ANY, 1238 bytes)
  62. 62 14/10/10 19:24:56 INFO BlockManagerMasterActor: Registering block manager eb176:33296 with 530.3 MB RAM
  63. 63 14/10/10 19:24:56 INFO BlockManagerMasterActor: Registering block manager eb175:32903 with 530.3 MB RAM
  64. 64 14/10/10 19:24:57 INFO ConnectionManager: Accepted connection from [eb176/10.1.69.176:39218]
  65. 65 14/10/10 19:24:57 INFO ConnectionManager: Accepted connection from [eb175/10.1.69.175:55227]
  66. 66 14/10/10 19:24:57 INFO SendingConnection: Initiating connection to [eb176/10.1.69.176:33296]
  67. 67 14/10/10 19:24:57 INFO SendingConnection: Initiating connection to [eb175/10.1.69.175:32903]
  68. 68 14/10/10 19:24:57 INFO SendingConnection: Connected to [eb175/10.1.69.175:32903], 1 messages pending
  69. 69 14/10/10 19:24:57 INFO SendingConnection: Connected to [eb176/10.1.69.176:33296], 1 messages pending
  70. 70 14/10/10 19:24:57 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on eb175:32903 (size: 2.0 KB, free: 530.3 MB)
  71. 71 14/10/10 19:24:57 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on eb176:33296 (size: 2.0 KB, free: 530.3 MB)
  72. 72 14/10/10 19:24:57 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on eb176:33296 (size: 12.3 KB, free: 530.3 MB)
  73. 73 14/10/10 19:24:57 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on eb175:32903 (size: 12.3 KB, free: 530.3 MB)
  74. 74 14/10/10 19:24:58 INFO TaskSetManager: Finished task 1.0 in stage 1.0 (TID 1) in 1697 ms on eb175 (1/2)
  75. 75 14/10/10 19:24:58 INFO TaskSetManager: Finished task 0.0 in stage 1.0 (TID 0) in 1715 ms on eb176 (2/2)
  76. 76 14/10/10 19:24:58 INFO TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool
  77. 77 14/10/10 19:24:58 INFO DAGScheduler: Stage 1 (map at WordCount.scala:26) finished in 3.593 s
  78. 78 14/10/10 19:24:58 INFO DAGScheduler: looking for newly runnable stages
  79. 79 14/10/10 19:24:58 INFO DAGScheduler: running: Set()
  80. 80 14/10/10 19:24:58 INFO DAGScheduler: waiting: Set(Stage 0)
  81. 81 14/10/10 19:24:58 INFO DAGScheduler: failed: Set()
  82. 82 14/10/10 19:24:58 INFO DAGScheduler: Missing parents for Stage 0: List()
  83. 83 14/10/10 19:24:58 INFO DAGScheduler: Submitting Stage 0 (ShuffledRDD[4] at reduceByKey at WordCount.scala:26), which is now runnable
  84. 84 14/10/10 19:24:58 INFO MemoryStore: ensureFreeSpace(2096) called with curMem=181820, maxMem=278302556
  85. 85 14/10/10 19:24:58 INFO MemoryStore: Block broadcast_2 stored as values in memory (estimated size 2.0 KB, free 265.2 MB)
  86. 86 14/10/10 19:24:58 INFO MemoryStore: ensureFreeSpace(1338) called with curMem=183916, maxMem=278302556
  87. 87 14/10/10 19:24:58 INFO MemoryStore: Block broadcast_2_piece0 stored as bytes in memory (estimated size 1338.0 B, free 265.2 MB)
  88. 88 14/10/10 19:24:58 INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on eb174:41110 (size: 1338.0 B, free: 265.4 MB)
  89. 89 14/10/10 19:24:58 INFO BlockManagerMaster: Updated info of block broadcast_2_piece0
  90. 90 14/10/10 19:24:58 INFO DAGScheduler: Submitting 2 missing tasks from Stage 0 (ShuffledRDD[4] at reduceByKey at WordCount.scala:26)
  91. 91 14/10/10 19:24:58 INFO TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
  92. 92 14/10/10 19:24:58 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 2, eb175, PROCESS_LOCAL, 1008 bytes)
  93. 93 14/10/10 19:24:58 INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 3, eb176, PROCESS_LOCAL, 1008 bytes)
  94. 94 14/10/10 19:24:58 INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on eb175:32903 (size: 1338.0 B, free: 530.3 MB)
  95. 95 14/10/10 19:24:58 INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on eb176:33296 (size: 1338.0 B, free: 530.3 MB)
  96. 96 14/10/10 19:24:58 INFO MapOutputTrackerMasterActor: Asked to send map output locations for shuffle 0 to sparkExecutor@eb175:59119
  97. 97 14/10/10 19:24:58 INFO MapOutputTrackerMaster: Size of output statuses for shuffle 0 is 144 bytes
  98. 98 14/10/10 19:24:58 INFO MapOutputTrackerMasterActor: Asked to send map output locations for shuffle 0 to sparkExecutor@eb176:39028
  99. 99 14/10/10 19:24:58 INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID 3) in 109 ms on eb176 (1/2)
  100. 100 14/10/10 19:24:58 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 2) in 120 ms on eb175 (2/2)
  101. 101 14/10/10 19:24:58 INFO DAGScheduler: Stage 0 (collect at WordCount.scala:26) finished in 0.123 s
  102. 102 14/10/10 19:24:58 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
  103. 103 14/10/10 19:24:58 INFO SparkContext: Job finished: collect at WordCount.scala:26, took 3.815637915 s
  104. 104 (scala,1)
  105. 105 (Function2,1)
  106. 106 (JavaSparkContext,1)
  107. 107 (JavaRDD,1)
  108. 108 (Tuple2,1)
  109. 109 (,1)
  110. 110 (org,7)
  111. 111 (apache,7)
  112. 112 (JavaPairRDD,1)
  113. 113 (java,7)
  114. 114 (function,4)
  115. 115 (api,7)
  116. 116 (Function,1)
  117. 117 (PairFunction,1)
  118. 118 (spark,7)
  119. 119 (FlatMapFunction,1)
  120. 120 (import,8)
  121. 121 14/10/10 19:24:58 INFO SparkUI: Stopped Spark web UI at http://eb174:4040
  122. 122 14/10/10 19:24:58 INFO DAGScheduler: Stopping DAGScheduler
  123. 123 14/10/10 19:24:58 INFO SparkDeploySchedulerBackend: Shutting down all executors
  124. 124 14/10/10 19:24:58 INFO SparkDeploySchedulerBackend: Asking each executor to shut down
  125. 125 14/10/10 19:24:58 INFO ConnectionManager: Removing SendingConnection to ConnectionManagerId(eb176,33296)
  126. 126 14/10/10 19:24:58 INFO ConnectionManager: Removing ReceivingConnection to ConnectionManagerId(eb176,33296)
  127. 127 14/10/10 19:24:58 ERROR ConnectionManager: Corresponding SendingConnection to ConnectionManagerId(eb176,33296) not found
  128. 128 14/10/10 19:24:58 INFO ConnectionManager: Removing ReceivingConnection to ConnectionManagerId(eb175,32903)
  129. 129 14/10/10 19:24:58 INFO ConnectionManager: Removing SendingConnection to ConnectionManagerId(eb175,32903)
  130. 130 14/10/10 19:24:58 INFO ConnectionManager: Removing SendingConnection to ConnectionManagerId(eb175,32903)
  131. 131 14/10/10 19:24:58 INFO ConnectionManager: Key not valid ? sun.nio.ch.SelectionKeyImpl@5e92c11b
  132. 132 14/10/10 19:24:58 INFO ConnectionManager: key already cancelled ? sun.nio.ch.SelectionKeyImpl@5e92c11b
  133. 133 java.nio.channels.CancelledKeyException
  134. 134 at org.apache.spark.network.ConnectionManager.run(ConnectionManager.scala:310)
  135. 135 at org.apache.spark.network.ConnectionManager$anon$4.run(ConnectionManager.scala:139)
  136. 136 14/10/10 19:24:59 INFO MapOutputTrackerMasterActor: MapOutputTrackerActor stopped!
  137. 137 14/10/10 19:24:59 INFO ConnectionManager: Selector thread was interrupted!
  138. 138 14/10/10 19:24:59 INFO ConnectionManager: Removing ReceivingConnection to ConnectionManagerId(eb176,33296)
  139. 139 14/10/10 19:24:59 ERROR ConnectionManager: Corresponding SendingConnection to ConnectionManagerId(eb176,33296) not found
  140. 140 14/10/10 19:24:59 INFO ConnectionManager: Removing SendingConnection to ConnectionManagerId(eb176,33296)
  141. 141 14/10/10 19:24:59 WARN ConnectionManager: All connections not cleaned up
  142. 142 14/10/10 19:24:59 INFO ConnectionManager: ConnectionManager stopped
  143. 143 14/10/10 19:24:59 INFO MemoryStore: MemoryStore cleared
  144. 144 14/10/10 19:24:59 INFO BlockManager: BlockManager stopped
  145. 145 14/10/10 19:24:59 INFO BlockManagerMaster: BlockManagerMaster stopped
  146. 146 14/10/10 19:24:59 INFO SparkContext: Successfully stopped SparkContext
  147. 147 14/10/10 19:24:59 INFO RemoteActorRefProvider$RemotingTerminator: Shutting down remote daemon.
  148. 148 14/10/10 19:24:59 INFO RemoteActorRefProvider$RemotingTerminator: Remote daemon shut down; proceeding with flushing remote transports.
  149. 149 14/10/10 19:24:59 INFO Remoting: Remoting shut down
  150. 150 14/10/10 19:24:59 INFO RemoteActorRefProvider$RemotingTerminator: Remoting shut down.
复制代码




5.参考资料


关于IDEA的使用:Scala从零开始:使用Intellij IDEA写hello world
scala编写WC: Spark wordcount开发并提交到集群运行
java编写WC:用java编写spark程序,简单示例及运行Spark在Yarn上运行Wordcount程序
Spark Programming Guide




引用:http://www.cnblogs.com/byrhuangqiang/p/4017725.html

欢迎加入about云群90371779322273151432264021 ,云计算爱好者群,亦可关注about云腾讯认证空间||关注本站微信

已有(1)人评论

跳转到指定楼层
supertonny 发表于 2016-9-28 23:22:13
赞一个,文章不错,思路清晰。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

推荐上一条 /2 下一条