本帖最后由 坎蒂丝_Swan 于 2015-1-19 11:02 编辑
问题导读 1.数据挖掘有关或者有帮助的R包有哪些? 2.数据挖掘有关或者有帮助的函数有哪些?
与数据挖掘有关或者有帮助的R包和函数的集合。
1、聚类 常用的包: fpc,cluster,pvclust,mclust 基于划分的方法: kmeans, pam, pamk, clara 基于层次的方法: hclust, pvclust, agnes, diana 基于模型的方法: mclust 基于密度的方法: dbscan 基于画图的方法: plotcluster, plot.hclust 基于验证的方法: cluster.stats
2、分类 常用的包: rpart,party,randomForest,rpartOrdinal,tree,marginTree, maptree,survival 决策树: rpart, ctree 随机森林: cforest, randomForest 回归, Logistic回归, Poisson回归: glm, predict, residuals 生存分析: survfit, survdiff, coxph
3、关联规则与频繁项集 常用的包: arules:支持挖掘频繁项集,最大频繁项集,频繁闭项目集和关联规则 DRM:回归和分类数据的重复关联模型 APRIORI算法,广度RST算法:apriori, drm ECLAT算法: 采用等价类,RST深度搜索和集合的交集: eclat
4、序列模式 常用的包: arulesSequences SPADE算法: cSPADE
5、时间序列 常用的包: timsac 时间序列构建函数: ts 成分分解: decomp, decompose, stl, tsr
6、统计 常用的包: Base R, nlme 方差分析: aov, anova 密度分析: density 假设检验: t.test, prop.test, anova, aov 线性混合模型:lme 主成分分析和因子分析:princomp
7、图表 条形图: barplot 饼图: pie 散点图: dotchart 直方图: hist 密度图: densityplot 蜡烛图, 箱形图 boxplot QQ (quantile-quantile) 图: qqnorm, qqplot, qqline Bi-variate plot: coplot 树: rpart Parallel coordinates: parallel, paracoor, parcoord 热图, contour: contour, filled.contour 其他图: stripplot, sunflowerplot, interaction.plot, matplot, fourfoldplot, assocplot, mosaicplot 保存的图表格式: pdf, postscript, win.metafile, jpeg, bmp, png
8、数据操作 缺失值:na.omit 变量标准化:scale 变量转置:t 抽样:sample 堆栈:stack, unstack 其他:aggregate, merge, reshape
9、与数据挖掘软件Weka做接口 RWeka: 通过这个接口,可以在R中使用Weka的所有算法。
|