分享

百度开发超级计算机 用于深度学习算法研究

问题导读

1、如何进行深度学习算法?
2、如何将超级计算机用于深度学习算法研究?





1.jpg

1月16日, 百度 表示,正在开发全球最准确的计算机视觉系统Deep Image。这一系统运行在针对深度学习算法优化的超级计算机之上。

百度称,在Imange Net对象识别评分中,这一系统的错误率仅为5.98%。而2014年,来自 谷歌 的一个团队凭借6.66%的错误率获得了冠军。在试验中,对于Image Net给出的数据集,人眼识别的错误率为5.1%。

Deep Image的主要优势在于其超级计算机Minwa。百度开发这一超级计算机的主要目的就是为了容纳Deep Image系统。过去几年,关注深度学习的研究者利用GPU(图形处理单元)去处理重度计算任务。实际上,Deep Image的论文援引的一项研究显示,在著名的谷歌Brain项目中,3台机器中12颗GPU带来的性能就达到了包含1000个节点的CPU簇的水平。百度首席科学家吴恩达此前从事了谷歌Brain项目。

不过到目前为止,还没有公司开发出类似Deep Image的专用系统,利用深度学习算法去完成计算机视觉的相关工作。以下是论文中给出的配置信息:

这一系统包含36个服务器节点,每一服务器节点配备了2颗六核 英特尔 至强E5-2620处理器。每个服务器包含4颗 英伟达 Tesla K40m GPU,以及1个FDR InfiniBand(速度为56GB/S)。这带来了高性能、低延时的连接,以及对RDMA的支持。每一颗GPU的最高浮点运算性能为每秒4.29万亿次浮点运算,而每一颗GPU也配备了12GB的内存。

整体来看,Minwa内置了6.9TB的主内存、1.7TB的设备内存,而理论上的最高性能约为0.6千万亿次浮点运算。

百度开发Minwa是为了解决与Deep Image算法相关的问题。“考虑到随机梯度优化算法的特性,设备互联需要极高的带宽和超低的延时,从而最小化通信开销。对于这类算法的分布式版本来说,这是必要的。”论文作者表示。

凭借如此强大的系统,研究人员可以使用与其他深度学习项目不同,或者说更好的训练数据。因此,百度没有使用常见的256×256像素图片,而是使用了512×512像素图片,并且可以给这些图片添加各种特效,例如色彩调整、增加光晕,以及透镜扭曲等。这样做的目的是使系统学习更多尺寸更小的对象,并在各种环境下识别对象。

百度正在大力投资,研究深度学习算法。在Deep Image之前,百度还开发了语音识别系统Deep Speech。这一产品已于去年12月公开发布。百度高管曾表示,该公司已经看见,语音和图片搜索的比例正越来越高,而未来还将继续上升。如果百度的产品能更好地处理现实世界数据,那么就能带来更好的用户体验。

百度并不是唯一一家从事此类研究的公司。在互联网市场,有多家公司正在投资研发深度学习算法,并且已取得了不错的成果。到目前为止,谷歌仍在ImageNet的实际竞赛中保持最高纪录。该公司也在大力开发深度学习算法,而本周还发布了可能利用了这一技术的新版谷歌翻译服务。 微软 和 Facebook 也拥有知名的深度学习算法研究员,并正在这一先进研究领域继续努力。

雅虎 、Twitter和Dropbox等公司也拥有自己的深度学习和计算机视觉团队。


END

已有(2)人评论

跳转到指定楼层
hahaxixi 发表于 2015-1-22 09:19:18
看上去很牛的样子~~~~~~~
回复

使用道具 举报

stark_summer 发表于 2015-1-22 12:49:39
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

推荐上一条 /2 下一条