本帖最后由 poppowerlb2 于 2015-7-28 20:56 编辑
问题导读:
1、什么是输入分区与输出分区一对一型?
2、什么是输入分区与输出分区多对一型?
3、什么是输入分区与输出分区多对多型?
4、什么是输出分区为输入分区子集型?
5、什么是Cache型算子?
处理数据类型为Value型的Transformation算子可以根据RDD变换算子的输入分区与输出分区关系分为以下几种类型:
- 输入分区与输出分区一对一型
- 输入分区与输出分区多对一型
- 输入分区与输出分区多对多型
- 输出分区为输入分区子集型
- 还有一种特殊的输入与输出分区一对一的算子类型:Cache型。 Cache算子对RDD分区进行缓存
输入分区与输出分区一对一型
(1)map
将原来RDD的每个数据项通过map中的用户自定义函数f映射转变为一个新的元素。源码中的map算子相当于初始化一个RDD,新RDD叫作MapPartitionsRDD(this,sc.clean(f))。
图中,每个方框表示一个RDD分区,左侧的分区经过用户自定义函数f:T->U映射为右侧的新的RDD分区。但是实际只有等到Action算子触发后,这个f函数才会和其他函数在一个Stage中对数据进行运算。 V1输入f转换输出V’ 1。
源码:
[mw_shl_code=scala,true]/**
* Return a new RDD by applying a function to all elements of this RDD.
*/
def map[U: ClassTag](f: T => U): RDD[U] = {
val cleanF = sc.clean(f)
new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.map(cleanF))
}[/mw_shl_code]
(2)flatMap
将原来RDD中的每个元素通过函数f转换为新的元素,并将生成的RDD的每个集合中的元素合并为一个集合。 内部创建FlatMappedRDD(this,sc.clean(f))。
图中,小方框表示RDD的一个分区,对分区进行flatMap函数操作,flatMap中传入的函数为f:T->U,T和U可以是任意的数据类型。将分区中的数据通过用户自定义函数f转换为新的数据。外部大方框可以认为是一个RDD分区,小方框代表一个集合。 V1、 V2、 V3在一个集合作为RDD的一个数据项,转换为V’ 1、 V’ 2、 V’ 3后,将结合拆散,形成为RDD中的数据项。
源码:
[mw_shl_code=scala,true]/**
* Return a new RDD by first applying a function to all elements of this
* RDD, and then flattening the results.
*/
def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U] = {
val cleanF = sc.clean(f)
new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.flatMap(cleanF))
}[/mw_shl_code]
(3)mapPartitions
mapPartitions函数获取到每个分区的迭代器,在函数中通过这个分区整体的迭代器对整个分区的元素进行操作。 内部实现是生成MapPartitionsRDD。
图中,用户通过函数f(iter) => iter.filter(_>=3)对分区中的所有数据进行过滤,>=3的数据保留。一个方块代表一个RDD分区,含有1、 2、 3的分区过滤只剩下元素3。
源码:
[mw_shl_code=scala,true]/**
* Return a new RDD by applying a function to each partition of this RDD.
*
* `preservesPartitioning` indicates whether the input function preserves the partitioner, which
* should be `false` unless this is a pair RDD and the input function doesn't modify the keys.
*/
def mapPartitions[U: ClassTag](
f: Iterator[T] => Iterator[U], preservesPartitioning: Boolean = false): RDD[U] = {
val func = (context: TaskContext, index: Int, iter: Iterator[T]) => f(iter)
new MapPartitionsRDD(this, sc.clean(func), preservesPartitioning)
}S[/mw_shl_code]
(4)glom
glom函数将每个分区形成一个数组,内部实现是返回的RDD[Array[T]]。
图中,方框代表一个分区。 该图表示含有V1、 V2、 V3的分区通过函数glom形成一个数组Array[(V1),(V2),(V3)]。
源码:
[mw_shl_code=scala,true]/**S
* Return an RDD created by coalescing all elements within each partition into an array.
*/
def glom(): RDD[Array[T]] = {
new MapPartitionsRDD[Array[T], T](this, (context, pid, iter) => Iterator(iter.toArray))
}[/mw_shl_code]
输入分区与输出分区多对一型
(1)union
使用union函数时需要保证两个RDD元素的数据类型相同,返回的RDD数据类型和被合并的RDD元素数据类型相同,并不进行去重操作,保存所有元素。如果想去重,可以使用distinct()。++符号相当于uion函数操作。
图中,左侧的大方框代表两个RDD,大方框内的小方框代表RDD的分区。右侧大方框代表合并后的RDD,大方框内的小方框代表分区。含有V1,V2…U4的RDD和含有V1,V8…U8的RDD合并所有元素形成一个RDD。V1、V1、V2、V8形成一个分区,其他元素同理进行合并。
源码:
[mw_shl_code=scala,true]/**
* Return the union of this RDD and another one. Any identical elements will appear multiple
* times (use `.distinct()` to eliminate them).
*/
def union(other: RDD[T]): RDD[T] = {
if (partitioner.isDefined && other.partitioner == partitioner) {
new PartitionerAwareUnionRDD(sc, Array(this, other))
} else {
new UnionRDD(sc, Array(this, other))
}
}[/mw_shl_code]
(2)certesian
对两个RDD内的所有元素进行笛卡尔积操作。操作后,内部实现返回CartesianRDD。
左侧的大方框代表两个RDD,大方框内的小方框代表RDD的分区。右侧大方框代表合并后的RDD,大方框内的小方框代表分区。
大方框代表RDD,大方框中的小方框代表RDD分区。 例如,V1和另一个RDD中的W1、 W2、 Q5进行笛卡尔积运算形成(V1,W1)、(V1,W2)、(V1,Q5)。
源码:
[mw_shl_code=scala,true]/**
* Return the Cartesian product of this RDD and another one, that is, the RDD of all pairs of
* elements (a, b) where a is in `this` and b is in `other`.
*/
def cartesian[U: ClassTag](other: RDD[U]): RDD[(T, U)] = new CartesianRDD(sc, this, other)[/mw_shl_code]
输入分区与输出分区多对多型
groupBy
将元素通过函数生成相应的Key,数据就转化为Key-Value格式,之后将Key相同的元素分为一组。
val cleanF = sc.clean(f)中sc.clean函数将用户函数预处理;
this.map(t => (cleanF(t), t)).groupByKey(p)对数据map进行函数操作,再对groupByKey进行分组操作。其中,p中确定了分区个数和分区函数,也就决定了并行化的程度。
图中,方框代表一个RDD分区,相同key的元素合并到一个组。 例如,V1,V2合并为一个Key-Value对,其中key为“ V” ,Value为“ V1,V2” ,形成V,Seq(V1,V2)。
源码:
[mw_shl_code=scala,true]/**
* Return an RDD of grouped items. Each group consists of a key and a sequence of elements
* mapping to that key. The ordering of elements within each group is not guaranteed, and
* may even differ each time the resulting RDD is evaluated.
*
* Note: This operation may be very expensive. If you are grouping in order to perform an
* aggregation (such as a sum or average) over each key, using [[PairRDDFunctions.aggregateByKey]]
* or [[PairRDDFunctions.reduceByKey]] will provide much better performance.
*/
def groupBy[K](f: T => K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])] =
groupBy[K](f, defaultPartitioner(this))
/**
* Return an RDD of grouped elements. Each group consists of a key and a sequence of elements
* mapping to that key. The ordering of elements within each group is not guaranteed, and
* may even differ each time the resulting RDD is evaluated.
*
* Note: This operation may be very expensive. If you are grouping in order to perform an
* aggregation (such as a sum or average) over each key, using [[PairRDDFunctions.aggregateByKey]]
* or [[PairRDDFunctions.reduceByKey]] will provide much better performance.
*/
def groupBy[K](f: T => K, numPartitions: Int)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])] =
groupBy(f, new HashPartitioner(numPartitions))
/**
* Return an RDD of grouped items. Each group consists of a key and a sequence of elements
* mapping to that key. The ordering of elements within each group is not guaranteed, and
* may even differ each time the resulting RDD is evaluated.
*
* Note: This operation may be very expensive. If you are grouping in order to perform an
* aggregation (such as a sum or average) over each key, using [[PairRDDFunctions.aggregateByKey]]
* or [[PairRDDFunctions.reduceByKey]] will provide much better performance.
*/
def groupBy[K](f: T => K, p: Partitioner)(implicit kt: ClassTag[K], ord: Ordering[K] = null)
: RDD[(K, Iterable[T])] = {
val cleanF = sc.clean(f)
this.map(t => (cleanF(t), t)).groupByKey(p)
}[/mw_shl_code]
输出分区为输入分区子集型
(1)filter
filter的功能是对元素进行过滤,对每个元素应用f函数,返回值为true的元素在RDD中保留,返回为false的将过滤掉。 内部实现相当于生成FilteredRDD(this,sc.clean(f))。
图中,每个方框代表一个RDD分区。 T可以是任意的类型。通过用户自定义的过滤函数f,对每个数据项进行操作,将满足条件,返回结果为true的数据项保留。 例如,过滤掉V2、 V3保留了V1,将区分命名为V1’。
源码:
[mw_shl_code=scala,true]/**
* Return a new RDD containing only the elements that satisfy a predicate.
*/
def filter(f: T => Boolean): RDD[T] = {
val cleanF = sc.clean(f)
new MapPartitionsRDD[T, T](
this,
(context, pid, iter) => iter.filter(cleanF),
preservesPartitioning = true)
}[/mw_shl_code]
(2)distinct
distinct将RDD中的元素进行去重操作。
图中,每个方框代表一个分区,通过distinct函数,将数据去重。 例如,重复数据V1、 V1去重后只保留一份V1。
源码:
[mw_shl_code=scala,true]/**
* Return a new RDD containing the distinct elements in this RDD.
*/
def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] =
map(x => (x, null)).reduceByKey((x, y) => x, numPartitions).map(_._1)
/**
* Return a new RDD containing the distinct elements in this RDD.
*/
def distinct(): RDD[T] = distinct(partitions.size)[/mw_shl_code]
(3)subtract
subtract相当于进行集合的差操作,RDD 1去除RDD 1和RDD 2交集中的所有元素。
图中,左侧的大方框代表两个RDD,大方框内的小方框代表RDD的分区。右侧大方框代表合并后的RDD,大方框内的小方框代表分区。V1在两个RDD中均有,根据差集运算规则,新RDD不保留,V2在第一个RDD有,第二个RDD没有,则在新RDD元素中包含V2。
源码:
[mw_shl_code=scala,true]/**
* Return an RDD with the elements from `this` that are not in `other`.
*
* Uses `this` partitioner/partition size, because even if `other` is huge, the resulting
* RDD will be <= us.
*/
def subtract(other: RDD[T]): RDD[T] =
subtract(other, partitioner.getOrElse(new HashPartitioner(partitions.size)))
/**
* Return an RDD with the elements from `this` that are not in `other`.
*/
def subtract(other: RDD[T], numPartitions: Int): RDD[T] =
subtract(other, new HashPartitioner(numPartitions))
/**
* Return an RDD with the elements from `this` that are not in `other`.
*/
def subtract(other: RDD[T], p: Partitioner)(implicit ord: Ordering[T] = null): RDD[T] = {
if (partitioner == Some(p)) {
// Our partitioner knows how to handle T (which, since we have a partitioner, is
// really (K, V)) so make a new Partitioner that will de-tuple our fake tuples
val p2 = new Partitioner() {
override def numPartitions = p.numPartitions
override def getPartition(k: Any) = p.getPartition(k.asInstanceOf[(Any, _)]._1)
}
// Unfortunately, since we're making a new p2, we'll get ShuffleDependencies
// anyway, and when calling .keys, will not have a partitioner set, even though
// the SubtractedRDD will, thanks to p2's de-tupled partitioning, already be
// partitioned by the right/real keys (e.g. p).
this.map(x => (x, null)).subtractByKey(other.map((_, null)), p2).keys
} else {
this.map(x => (x, null)).subtractByKey(other.map((_, null)), p).keys
}
}[/mw_shl_code]
(4)sample
sample将RDD这个集合内的元素进行采样,获取所有元素的子集。用户可以设定是否有放回的抽样、百分比、随机种子,进而决定采样方式。
参数说明:
withReplacement=true, 表示有放回的抽样;
withReplacement=false, 表示无放回的抽样。
每个方框是一个RDD分区。通过sample函数,采样50%的数据。V1、V2、U1、U2、U3、U4采样出数据V1和U1、U2,形成新的RDD。
源码:
[mw_shl_code=scala,true]/**
* Return a sampled subset of this RDD.
*/
def sample(withReplacement: Boolean,
fraction: Double,
seed: Long = Utils.random.nextLong): RDD[T] = {
require(fraction >= 0.0, "Negative fraction value: " + fraction)
if (withReplacement) {
new PartitionwiseSampledRDD[T, T](this, new PoissonSampler[T](fraction), true, seed)
} else {
new PartitionwiseSampledRDD[T, T](this, new BernoulliSampler[T](fraction), true, seed)
}
}[/mw_shl_code]
(5)takeSample
takeSample()函数和上面的sample函数是一个原理,但是不使用相对比例采样,而是按设定的采样个数进行采样,同时返回结果不再是RDD,而是相当于对采样后的数据进行collect(),返回结果的集合为单机的数组。
图中,左侧的方框代表分布式的各个节点上的分区,右侧方框代表单机上返回的结果数组。通过takeSample对数据采样,设置为采样一份数据,返回结果为V1。
源码:
[mw_shl_code=scala,true]/**
* Return a fixed-size sampled subset of this RDD in an array
*
* @param withReplacement whether sampling is done with replacement
* @param num size of the returned sample
* @param seed seed for the random number generator
* @return sample of specified size in an array
*/
def takeSample(withReplacement: Boolean,
num: Int,
seed: Long = Utils.random.nextLong): Array[T] = {
val numStDev = 10.0
if (num < 0) {
throw new IllegalArgumentException("Negative number of elements requested")
} else if (num == 0) {
return new Array[T](0)
}
val initialCount = this.count()
if (initialCount == 0) {
return new Array[T](0)
}
val maxSampleSize = Int.MaxValue - (numStDev * math.sqrt(Int.MaxValue)).toInt
if (num > maxSampleSize) {
throw new IllegalArgumentException("Cannot support a sample size > Int.MaxValue - " +
s"$numStDev * math.sqrt(Int.MaxValue)")
}
val rand = new Random(seed)
if (!withReplacement && num >= initialCount) {
return Utils.randomizeInPlace(this.collect(), rand)
}
val fraction = SamplingUtils.computeFractionForSampleSize(num, initialCount,
withReplacement)
var samples = this.sample(withReplacement, fraction, rand.nextInt()).collect()
// If the first sample didn't turn out large enough, keep trying to take samples;
// this shouldn't happen often because we use a big multiplier for the initial size
var numIters = 0
while (samples.length < num) {
logWarning(s"Needed to re-sample due to insufficient sample size. Repeat #$numIters")
samples = this.sample(withReplacement, fraction, rand.nextInt()).collect()
numIters += 1
}
Utils.randomizeInPlace(samples, rand).take(num)
}[/mw_shl_code]
Cache型
(1)cache
cache将RDD元素从磁盘缓存到内存,相当于persist(MEMORY_ONLY)函数的功能。
图中,每个方框代表一个RDD分区,左侧相当于数据分区都存储在磁盘,通过cache算子将数据缓存在内存。
源码:
[mw_shl_code=scala,true]/** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
def cache(): this.type = persist()[/mw_shl_code]
(2)persist
persist函数对RDD进行缓存操作。数据缓存在哪里由StorageLevel枚举类型确定。
有几种类型的组合,DISK代表磁盘,MEMORY代表内存,SER代表数据是否进行序列化存储。StorageLevel是枚举类型,代表存储模式,如,MEMORY_AND_DISK_SER代表数据可以存储在内存和磁盘,并且以序列化的方式存储。 其他同理。
图中,方框代表RDD分区。 disk代表存储在磁盘,mem代表存储在内存。 数据最初全部存储在磁盘,通过persist(MEMORY_AND_DISK)将数据缓存到内存,但是有的分区无法容纳在内存,例如:图3-18中将含有V1,V2,V3的RDD存储到磁盘,将含有U1,U2的RDD仍旧存储在内存。
源码:
[mw_shl_code=scala,true]/**
* Set this RDD's storage level to persist its values across operations after the first time
* it is computed. This can only be used to assign a new storage level if the RDD does not
* have a storage level set yet..
*/
def persist(newLevel: StorageLevel): this.type = {
// TODO: Handle changes of StorageLevel
if (storageLevel != StorageLevel.NONE && newLevel != storageLevel) {
throw new UnsupportedOperationException(
"Cannot change storage level of an RDD after it was already assigned a level")
}
sc.persistRDD(this)
// Register the RDD with the ContextCleaner for automatic GC-based cleanup
sc.cleaner.foreach(_.registerRDDForCleanup(this))
storageLevel = newLevel
this
}
/** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
def persist(): this.type = persist(StorageLevel.MEMORY_ONLY)[/mw_shl_code]
|
|