分享

数据分析和数据挖掘的区别

Mirinda 发表于 2015-8-22 21:07:22 [显示全部楼层] 回帖奖励 阅读模式 关闭右栏 1 11079
本帖最后由 Mirinda 于 2015-8-22 21:11 编辑
问题导读

1.什么是数据分析?
2.什么是数据挖掘?
3.
数据分析和数据挖掘的区别。





      有很多初入商业智能的同学可能不明白数据分析和数据挖掘的区别在哪里,觉得他们做的事情都差不多,我亦如此!经过这几年工作中和他们的合作和学习,大概清楚了他们的区别,今天看到一篇文章,系统的解释了下这两者的区别

1.什么是数据分析?

      数据分析,是对数据的一种操作手段。或者算法。目标是针对先验的约束,对数据进行整理,筛选,加工。由此得到信息。

2.什么是数据挖掘?
     数据挖掘,是对数据分析手段后的信息,进行价值化的分析。

3.数据分析和数据挖掘的区别。
      而数据分析和数据挖掘,又是甚至是递归的。就是数据分析的结果是信息,这些信息作为数据,由去数据挖掘。而数据挖掘,又使用了数据分析的手段。周而复始。。

      这里再细化说一下。数据分析和数据挖掘的最大区别在于,数据分析,是以输入的数据为基础,通过先验的约束,对数据进行处理,但是不以结论何如为调 整。例如你需要图像识别,这个属于数据分析。你要分析人脸。数据通过你的先验的方法,就是出来个猫脸。你的数据分析也没有问题。你需要默默的承受结果,并 且尊重事实。因此数据分析的重点在于数据的有效性,真实性,和先验约束的正确性。


       而数据挖掘则不同,数据挖掘是对信息的价值化的获取。价值化自然不考虑数据本身,而是考虑数据是否有价值。由此,一批数据,你尝试对它做不同的价值 评估,则就是数据挖掘。此时对比数据分析,最大的特点就是,你需要调整你的不同的先验约束,再次对数据进行分析。而先验的约束已经不是针对数据来源自身的 特点,例如信噪比处理算法。而是你期望得到的一个有价值的内容,做先验的约束。以观测,数据根据这个约束,是否有正确的反馈。

      说了这么多,恐怕可能还是有人不清楚。我就举两个简单的例子,诸位如果去面数据分析师,或数据挖掘师,不知道怎么回答时,套用我的例子。

      1、你打算送女朋友戒指,那么你手上有批品牌和款型名单。你按照价格,风格,材质分类,得出如下结论,钻戒比钢戒贵。大钻戒比小钻戒贵,钢戒款式多。钻戒款式少。OK,这就是数据分析。对于一批数据,根据你的先验约束(按照什么什么划分)获得的结论。


         但是,不是最贵的你的女朋友就最喜欢,女人嘛,感性的动物。也不是最贵的你能买的起。这些信息的价值,对你没有意义,你需要的就是用最少的钱,让你 女朋友最开心。由此你需要数据挖掘。最优标准就是,最少的投入,最大的开心。OK。你需要先验的去寻找,贵的戒指不买的理由。哪怕从已有数据中得出。比如 “钻戒款式少”或者“大钻戒也比钢钻戒要小”。同时你要去问问你的女朋友,你觉得怎么样才开心啊。当然,如果你女朋友来一句“反正看你皮夹胖的可以卡住 门,我就不开心”,那你就得继续琢磨,我得找个,刚好投入能让皮夹不卡门的,而且让女朋友开心的。于是,你又去数据分析,此时实际上是用价值的评价标准, 对数据进行价值化因此如果你确定了分析方式,则动作确实是数据分析,但是带上你确定价值化的评价标准的动作,就是数据挖掘了。最终,你可以得到一堆理由, 即少钱,也让女朋友开心。

      2、老婆早上就给你50元,让你买一天的菜。要求鸡猪鱼肉俱全,且蛋菜葱蒜豆品必备。你到菜场,先绕一圈,各个档口拉拉家常,问问价格。猪肉十几一 斤,鱼也不便宜。数据分析下来,计算器,劈里啪啦的按,数字长的比韭菜还快。最后得出一价格。这个就是数据分析。根据客观数据,先验的公式,得到的信息。 但对你而言,最大的价值是,用最少的钱,满足老婆的要求,还可以截留1元买根棒棒糖吃。那么你就要开始进行数据挖掘了。但是要有评价标准。多少肉算一天的 菜量。梅花,后坐,小排,蹄旁。怎么个选法,可以让老婆满意,同时价格落于希望承受的空间范围。青菜白菜都是菜,便宜营养我最爱,于是,接着设定范围。几 个轮回,包括中饭怎么配,晚饭怎么配,最终,到腾出一个购买方案,这就是数据挖掘。

简单的说,不谈钱,或者不谈价值,就没有挖掘可言。但凡不谈时,都是数据分析。当然每轮挖掘过程中,又是个数据分析的过程。没有客观数据,没有主观喜好,就没有数据挖掘一说。只有数据分析之为。

       所以切记,别把数据分析和数据挖掘混淆了。对于一些公司,热乎的搞名词概念。你也可以在BS的时候,好好的BS他们一下。补充个抽象说法,数据分析,就是先决而后知。 数据挖掘就是先知而后决。决断的决。


已有(1)人评论

跳转到指定楼层
hb1984 发表于 2015-8-23 22:00:32
谢谢楼主分享。         
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

推荐上一条 /2 下一条