问题导读:
1.Flume有哪些优势? 2.为什么要对Flume日志收集系统进行分层设计? 3.怎样构建一个相对复杂的Flume分层日志收集系统?
Flume作为一个日志收集工具,非常轻量级,基于一个个Flume Agent,能够构建一个很复杂很强大的日志收集系统,它的灵活性和优势,主要体现在如下几点:
- 模块化设计:在其Flume Agent内部可以定义三种组件:Source、Channel、Sink
- 组合式设计:可以在Flume Agent中根据业务需要组合Source、Channel、Sink三种组件,构建相对复杂的日志流管道
- 插件式设计:可以通过配置文件来编排收集日志管道的流程,减少对Flume代码的侵入性
- 可扩展性:我们可以根据自己业务的需要来定制实现某些组件(Source、Channel、Sink)
- 支持集成各种主流系统和框架:像Hadoop、HBase、Hive、Kafka、ElasticSearch、Thrift、Avro等,都能够很好的和Flume集成
- 高级特性:Failover、Load balancing、Interceptor等
为什么要对Flume日志收集系统进行分层设计
基于Flume设计实现分层日志收集系统,到底有什么好处呢?我们可以先看一下,如果不分层,会带来哪些问题:
- 如果需要通过Kafka去缓冲上游基于Flume收集而构建的日志流,对于数据平台内部服务器产生的数据还好,但是如果日志数据是跨业务组,甚至是跨部门,那么就需要将Kafka相关信息暴露给外部,这样对Kafka的访问便不是数据平台内部可控的
- 如果是外部日志进入平台内部HDFS,这样如果需要对Hadoop系统进行升级或例行维护,这种直连的方式会影响到上游部署Flume的日志流的始端日志收集服务
- 如果数据平台内部某些系统,如Kafka集群、HDFS集群所在节点的机房位置变更,数据迁移,会使得依赖日志数据的外部系统受到不同程度的影响,外部系统需要相关开发或运维人员参与进来
- 由于收集日志的数据源端可能是外部一些服务器(多个单个的节点),一些业务集群(相互协作的多节点组),也可能是内部一些提供收集服务的服务节点,这些所有的服务器上部署的Flume Agent都处于一层中,比较难于分组管理
- 由于所有数据源端Flume Agent收集的日志进入数据平台的时候,没有一个统一的类似总线的组件,很难因为某些业务扩展而独立地去升级数据平台内部的接收层服务节点,可能为了升级数据平台内部某个系统或服务而导致影响了其他的接收层服务节点
通过下图我们可以看出,这种单层日志收集系统设计,存在太多的问题,而且系统或服务越多导致整个日志收集系统越难以控制:
上图中,无论是外部还是内部,只要部署了Flume Agent的节点,都直接同内部的Kafka集群和Hadoop集群相连,所以在数据平台内部只能尽量保持Kafka和Hadoop集群正常稳定运行,也要为外部日志收集Flume Agent的数据流量的陡增和异常变化做好防控准备。再者,如需停机维护或者升级某一个集群,可能都需要通知外部所有Flume Agent所在节点的业务方,做好应对(停机)准备。
接着看,如果我们基于Flume使用分层的方式来设计日志收集系统,又有哪些优势,如下图所示:
上图中,Flume日志收集系统采用两层架构设计:第一层(L1)是日志收集层,第二层(L2)是数据平台缓冲层(汇聚层)。通过这种方式,使得日志收集系统有如下特点:
- 针对数据平台外部的业务系统,根据需要分析的数据业务类型进行分组,属于同一种类型的业务日志,在数据平台前端增加了一个Flume汇聚层节点组,该组节点只影响到它对应的L1层的业务数据
- 如果Hadoop集群、Kafka需要停机维护或升级,对外部L1层Flume Agent没有影响,只需要在L2层做好数据的接收与缓冲即可,待维护或升级结束,继续将L2层缓存的数据导入到数据存储系统
- 如果外部某个类型的业务日志数据节点需要扩容,直接在L1层将数据流指向数据平台内部与之相对应的L2层Flume Agent节点组即可,能够对外部因业务变化发生的新增日志收集需求,进行快速地响应和部署
- 对于数据平台内部,因为收集日志的节点非常可控,可以直接通过L1层Flume Agent使日志数据流入HDFS或Kafka,当然为了架构统一和管理,最好也是通过L2层Flume Agent节点组来汇聚/缓冲L1层Flume Agent收集的日志数据
通过上面分析可见,分层无非是为了使的日志数据源节点的Flume Agent服务与数据平台的存储系统(Kafka/HDFS)进行解耦,同时能够更好地对同类型业务多节点的日志流进行一个聚合操作,并分离开独立管理。另外,可以根据实际业务需要,适当增加Flume系统分层,满足日志流数据的汇聚需要。 应用整体架构
我们看一下,Flume日志收集系统,在我们这个示例应用中处于一个什么位置,我简单画了一下图,加了一些有关数据处理和分析的节点/组件,如下图所示:
这里,简单了解一下上图即可,由于日志收集在整个应用系统中是很重要的一个环节,所以必须保证日志收集系统设计的可靠、可用、灵活、稳定,通过上面在日志收集系统收集日志之后,数据平台所做的大量分析处理,来凸显日志收集系统的重要性,这里其他内容不做过多说明。
Flume分层架构实践
这里,我们主要以实时收集日志为例,说明如何构建一个相对复杂的Flume分层日志收集系统。首先,简要说明一下日志收集需求:
- 手机客户端上报的用户行为事件(App User Event),通过数据平台内部定义好的接口格式,从Nginx日志里面实时流入数据平台,这对应于Flume日志收集系统L1层
- 通过组织各种活动,来推广某些App的产品特性,会定向向用户推送通知,单独使用推送点击(Push Click)Agent来收集这些点击行为数据
- App所依赖的一些基础内容,会以服务的形式开放给外部第三方调用,对于由第三方App带来的用户的行为点击事件(Thirdparty Click),单独使用L1层Flume Agent进行收集
- 第三方会在App中根据不同的内容,投放广告(Ad),对于广告曝光/点击行为的数据,与上述提到的数据收集单独分离出来,因为该日志数据后期可能会大规模推广,会有爆发性增长,在L1层进行收集
- 在L2层主要是汇聚或缓冲L1层流入的日志数据
- 同时,为了防止L2层Flume Agent因为故障或例行停机维护等,所以使用了Flume的Failover特性,亦即L1层每一个Sink同时指向L2层的2个相同的Flume Agent
- L1层的Flume Agent在收集日志的过程中应该不允许在Channel中累积过多数据(但是还要防止数据流速过慢导致内存Channel数据溢出),还要能够尽量降低读写磁盘的开销,所以使用内存类型的Channel
- L2层为了保证数据能够可靠地缓冲(在允许的一段时间内累积保存数据),如Hadoop或Kafka故障停机或停机维护升级,采用文件类型的Channel,还要尽量调大容量,也不能因为多应用共享磁盘而造成数据处理延迟,所以对于不同的Channel分别使用独立的磁盘
详细分层设计如下图所示:
上图是从实际的整个数据平台中拿出来一部分,简单便于解释说明。有关上图中所涉及到的Flume Agent的配置详情,下面会根据Flume分层的结构(L1层、L2层)来详细配置说明。由于L1层的10.10.1.101和10.10.1.102节点上部署的Flume Agent是对称的,所以下面只拿出其中一个来说明配置,不同的是,这两个节点上Flume Agent的Sink使用Failover功能,分别交叉指向L2层Flume Agent,也能够起到一定的负载均衡的作用。
上游Flume日志收集层
下面,分别针对10.10.1.101节点上的3个Flume Agent的配置内容,分别进行说明如下:
- L1层:App用户行为事件(App User Event)日志收集
Flume Agent名称为a1,使用Exec Source、Memory Channel、Avro Sink,这里我们的Nginx日志文件始终指向/data/nginx/logs/app_user_events.log,即使日切或小时切文件,使用tail -F就能保证日志内容都被收集。具体配置内容如下所示:
[mw_shl_code=text,true]a1.sources = s1
a1.channels = mc1
a1.sinks = k1 k2
# Configure source
a1.sources.s1.channels = mc1
a1.sources.s1.type = exec
a1.sources.s1.command = tail -F /data/nginx/logs/app_user_events.log
# Configure channel
a1.channels.mc1.type = memory
a1.channels.mc1.transactionCapacity = 50000
a1.channels.mc1.capacity = 100000
# Configure sinks
a1.sinks.k1.channel = mc1
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = 10.10.1.122
a1.sinks.k1.port = 44446
a1.sinks.k2.channel = mc1
a1.sinks.k2.type = avro
a1.sinks.k2.hostname = 10.10.1.121
a1.sinks.k2.port = 44446
# Configure failover
a1.sinkgroups = g1
a1.sinkgroups.g1.sinks = k1 k2
a1.sinkgroups.g1.processor.type = failover
a1.sinkgroups.g1.processor.priority.k1 = 9
a1.sinkgroups.g1.processor.priority.k2 = 7
a1.sinkgroups.g1.processor.maxpenalty = 10000[/mw_shl_code]
- L1层:推送点击事件(Push Click Event)日志收集
[mw_shl_code=text,true]a2.sources = s2
a2.channels = mc2
a2.sinks = k3 k4
# Configure source
a2.sources.s2.channels = mc2
a2.sources.s2.type = exec
a2.sources.s2.command = tail -F /data/nginx/logs/push_click_events.log
# Configure channel
a2.channels.mc2.type = memory
a2.channels.mc2.capacity = 50000
a2.channels.mc2.transactionCapacity = 100000
# Configure sinks
a2.sinks.k3.channel = mc2
a2.sinks.k3.type = avro
a2.sinks.k3.hostname = 10.10.1.121
a2.sinks.k3.port = 44447
a2.sinks.k4.channel = mc2
a2.sinks.k4.type = avro
a2.sinks.k4.hostname = 10.10.1.122
a2.sinks.k4.port = 44447
# Configure failover
a2.sinkgroups = g2
a2.sinkgroups.g2.sinks = k3 k4
a2.sinkgroups.g2.processor.type = failover
a2.sinkgroups.g2.processor.priority.k3 = 9
a2.sinkgroups.g2.processor.priority.k4 = 7
a2.sinkgroups.g2.processor.maxpenalty = 10000[/mw_shl_code]
- L1层:第三方点击事件(Thirdparty Click Event)日志收集
第三方点击事件通过统一的接口上传数据,那么配置起来也比较容易,如下所示:
[mw_shl_code=text,true]a3.sources = s3
a3.channels = mc3
a3.sinks = k5 k6
# Configure source
a3.sources.s3.channels = mc3
a3.sources.s3.type = exec
a3.sources.s3.command = tail -F /data/nginx/logs/thirdparty_click_events.log
# Configure channel
a3.channels.mc3.type = memory
a3.channels.mc3.transactionCapacity = 50000
a3.channels.mc3.capacity = 100000
# Configure sinks
a3.sinks.k5.channel = mc3
a3.sinks.k5.type = avro
a3.sinks.k5.hostname = 10.10.1.121
a3.sinks.k5.port = 44446
a3.sinks.k6.channel = mc3
a3.sinks.k6.type = avro
a3.sinks.k6.hostname = 10.10.1.122
a3.sinks.k6.port = 44446
# Configure failover
a3.sinkgroups = g3
a3.sinkgroups.g3.sinks = k5 k6
a3.sinkgroups.g3.processor.type = failover
a3.sinkgroups.g3.processor.priority.k5 = 9
a3.sinkgroups.g3.processor.priority.k6 = 7
a3.sinkgroups.g3.processor.maxpenalty = 10000[/mw_shl_code]
- L1层:广告点击事件(Ad Click Event)日志收集
广告点击事件日志收集配置,如下所示:
[mw_shl_code=text,true]a4.sources = s4
a4.channels = mc4
a4.sinks = k7 k8
# Configure source
a4.sources.s4.channels = mc4
a4.sources.s4.type = exec
a4.sources.s4.command = tail -F /data/nginx/logs/ad.log
# Configure channel
a4.channels.mc4.type = memory
a4.channels.mc4.transactionCapacity = 50000
a4.channels.mc4.capacity = 100000
# Configure sinks
a4.sinks.k7.channel = mc4
a4.sinks.k7.type = avro
a4.sinks.k7.hostname = 10.10.1.121
a4.sinks.k7.port = 44448
a4.sinks.k8.channel = mc4
a4.sinks.k8.type = avro
a4.sinks.k8.hostname = 10.10.1.122
a4.sinks.k8.port = 44448
# Configure failover
a4.sinkgroups = g4
a4.sinkgroups.g4.sinks = k7 k8
a4.sinkgroups.g4.processor.type = failover
a4.sinkgroups.g4.processor.priority.k7 = 10
a4.sinkgroups.g4.processor.priority.k8 = 8
a4.sinkgroups.g4.processor.maxpenalty = 10000[/mw_shl_code]
下游Flume日志收集汇聚层
这种业务需求是:把App用户事件和推送点击事件合并写入文件,最后都会写入HDFS,从而进一步在Hive中进行离线分析;同时又要使这两种事件分别独立地走实时计算的流程,App用户事件实时计算流程需要实时统计用户使用App过程中行为特征,而推送点击事件实时计算需要针对某一次活动来实时分析和展示用户的参与情况。
具体配置内容,如下所示:
[mw_shl_code=text,true]a1.sources = s1 s2
a1.channels = fc1 fc2 fc3
a1.sinks = kk1 fk2 kk3
# Configure source:
# Configure app user event source: s1 -> fc1+fc2
a1.sources.s1.channels = fc1 fc2
a1.sources.s1.type = avro
a1.sources.s1.bind = 10.10.1.121
a1.sources.s1.port = 44446
a1.sources.s1.threads = 8
# Configure source
# Configure push click event source: s2 -> fc2+fc3
a1.sources.s2.channels = fc2 fc3
a1.sources.s2.type = avro
a1.sources.s2.bind = 10.10.1.122
a1.sources.s2.port = 44447
a1.sources.s2.threads = 4
# Configure file channel(/data1)
# Configure app user event channel: fc1 ->kk1
a1.channels.fc1.type = file
a1.channels.fc1.checkpointDir = /data1/flume/channels/app_user_event/checkpoint
a1.channels.fc1.useDualCheckpoints = true
a1.channels.fc1.backupCheckpointDir = /data1/flume/channels/app_user_event/backup
a1.channels.fc1.dataDirs = /data1/flume/channels/app_user_event/data
a1.channels.fc1.transactionCapacity = 100000
a1.channels.fc1.capacity = 500000
a1.channels.fc1.checkpointInterval = 60000
a1.channels.fc1.keep-alive = 5
a1.channels.fc1.maxFileSize = 5368709120
# Configure file channel(/data2)
# Configure app user event + push click event: fc2 - > fk2
a1.channels.fc2.type = file
a1.channels.fc2.checkpointDir = /data2/flume/channels/offline_file_event/checkpoint
a1.channels.fc2.useDualCheckpoints = true
a1.channels.fc2.backupCheckpointDir = /data2/flume/channels/offline_file_event/backup
a1.channels.fc2.dataDirs = /data2/flume/channels/offline_file_event/data
a1.channels.fc2.transactionCapacity = 100000
a1.channels.fc2.capacity = 500000
a1.channels.fc2.checkpointInterval = 60000
a1.channels.fc2.keep-alive = 5
a1.channels.fc2.maxFileSize = 5368709120
# Configure file channel(/data3)
# Configure push click channel: fc3 ->kk3
a1.channels.fc3.type = file
a1.channels.fc3.checkpointDir = /data3/flume/channels/push_click_event/checkpoint
a1.channels.fc3.useDualCheckpoints = true
a1.channels.fc3.backupCheckpointDir = /data3/flume/channels/push_click_event/backup
a1.channels.fc3.dataDirs = /data3/flume/channels/push_click_event/data
a1.channels.fc3.transactionCapacity = 100000
a1.channels.fc3.capacity = 500000
a1.channels.fc3.checkpointInterval = 60000
a1.channels.fc3.keep-alive = 5
a1.channels.fc3.maxFileSize = 5368709120
# Configure sink: RealtimeMessageSink(app user event)
a1.sinks.kk1.type = org.shirdrn.flume.sink.RealtimeMessageSink
a1.sinks.kk1.channel = fc1
a1.sinks.kk1.metadata.broker.list = kafka01:9092,kafka02:9092,kafka03:9092
a1.sinks.kk1.topic = json_user_event
a1.sinks.kk1.serializer.class = kafka.serializer.StringEncoder
a1.sinks.kk1.producer.type = async
a1.sinks.kk1.message.send.max.retries = 3
a1.sinks.kk1.client.id = flume_app_user_event_2_1
a1.sinks.kk1.event.decoder.count = 8
a1.sinks.kk1.output.stat.event.batch.size = 2000
a1.sinks.kk1.event.decoder.queue.size = 1000
# Configure sink: RichRollingFileSink
a1.sinks.fk2.type = org.shirdrn.flume.sink.RichRollingFileSink
a1.sinks.fk2.channel = fc2
a1.sinks.fk2.batchSize = 100
a1.sinks.fk2.serializer = TEXT
a1.sinks.fk2.sink.rollInterval = 60
a1.sinks.fk2.sink.directory = /data/flume/rolling_files
a1.sinks.fk2.sink.file.prefix = event
a1.sinks.fk2.sink.file.suffix = .log
a1.sinks.fk2.sink.file.pattern = yyyyMMddHHmmss
# Configure sink: RealtimeMessageSink(push click)
a1.sinks.kk3.type = org.shirdrn.flume.sink.RealtimeMessageSink
a1.sinks.kk3.channel = fc3
a1.sinks.kk3.metadata.broker.list = kafka01:9092,kafka02:9092,kafka03:9092
a1.sinks.kk3.topic = json_push_click_event
a1.sinks.kk3.serializer.class = kafka.serializer.StringEncoder
a1.sinks.kk3.producer.type = async
a1.sinks.kk3.message.send.max.retries = 3
a1.sinks.kk3.client.id = flume_push_click_2_1
a1.sinks.kk3.event.decoder.count = 4
a1.sinks.kk3.output.stat.event.batch.size = 2000
a1.sinks.kk3.event.decoder.queue.size = 1000[/mw_shl_code]
上面,可以看到我们自己实现的org.shirdrn.flume.sink.RealtimeMessageSink,该Sink主要是使Flume收集的日志写入Kafka中,在Flume 1.5.0版本中还没有内置实现,所以我们自己实现了,并在其中加入了适合我们业务的处理逻辑,比如,将Nginx日志记录行解析,然后根据实时计算需要,过滤掉不需要进入Kafka(最终在Storm集群中处理)事件数据,最后转成JSON字符串的格式,写入到Kafka中的Topic里。通过上面的配置也可以看出,可以配置很多参数,例如解析线程数、队列大小等。
由于我们需要将写入本地文件系统的文件按照我们自己的方式来定义,所以基于Flume内置的file_roll实现进行修改,实现了自己的org.shirdrn.flume.sink.RichRollingFileSink,该Sink主要是对文件名字符串进行格式化,能够通过文件名来获取到文件生成的时间(人类可读格式)。
上面的图中,L1层可以根据需要扩展到更多的服务器节点,在L2层根据需要进行汇聚/缓冲,具体配置内容如下所示:
[mw_shl_code=text,true]a2.sources = s3
a2.channels = fc4
a2.sinks = kk4
# Configure source: s3 -> fc4
a2.sources.s3.channels = fc4
a2.sources.s3.type = avro
a2.sources.s3.bind = 10.10.1.121
a2.sources.s3.port = 44448
a2.sources.s3.threads = 2
# Configure channel(/data4)
# Configure Ad channel: fc4 ->kk4
a2.channels.fc4.type = file
a2.channels.fc4.checkpointDir = /data4/flume/channels/ad/checkpoint
a2.channels.fc4.useDualCheckpoints = true
a2.channels.fc4.backupCheckpointDir = /data4/flume/channels/ad/backup
a2.channels.fc4.dataDirs = /data4/flume/channels/ad/data
a2.channels.fc4.transactionCapacity = 100000
a2.channels.fc4.capacity = 500000
a2.channels.fc4.checkpointInterval = 60000
a2.channels.fc4.keep-alive = 5
a2.channels.fc1.maxFileSize = 5368709120
# Configure sinks: RealtimeAdKafkaSink
a2.sinks.kk4.type = org.shirdrn.flume.sink.RealtimeAdKafkaSink
a2.sinks.kk4.channel = fc4
a2.sinks.kk4.metadata.broker.list = kafka01:9092,kafka02:9092,kafka03:9092
a2.sinks.kk4.topic = json_ad_event
a2.sinks.kk4.serializer.class = kafka.serializer.StringEncoder
a2.sinks.kk4.producer.type = async
a2.sinks.kk4.message.send.max.retries = 3
a2.sinks.kk4.client.id = flume_ad_2_1
a2.sinks.kk4.event.decoder.count = 4
a2.sinks.kk4.output.stat.event.batch.size = 2500
a2.sinks.kk4.event.decoder.queue.size = 5000[/mw_shl_code]
实践总结
这里我们简单总结一些内容,如下所示:
简单一点的监控,直接在启动的时候,开启一个Web端口,通过端口来获取Flume Agent服务的一些相关数据,命令类似:
[mw_shl_code=text,true]bin/flume-ng agent -n a1 -c conf -f conf/config.conf -Dflume.monitoring.type=http -Dflume.monitoring.port=34545[/mw_shl_code]
这样便可以在Flume Agent服务节点上,浏览Web端口34545来查看,数据以JSON格式表示,比较重要的一些元数据,如channel容量、当前使用量等等,通过这些数据可以了解当前Flume的工作状态,是否需要升级扩容等等。
另外,也可以通过Ganglia来收集并分析Flume Agent服务运行状态,能够更加详细地展示Flume Agent服务的状态,因为Ganglia配置相对复杂,这里就不做过多解释,感兴趣可以尝试一下。
因为Flume使用Java实现的,所以就会遇到有关JVM调优的问题,这个也比较容易。默认情况下,Flume Agent进程的堆内存设置比较小,在日志数据量比较大的情况下就需要修改并调试这些参数,以满足业务需要。设置JVM相关参数,可以修改conf/flume-env.sh文件(也可以直接在启动Flume Agent服务时指定JVM选项参数),例如修改JAVA_OPTS变量,示例如下所示:
[mw_shl_code=text,true]JAVA_OPTS="-server -Xms1024m -Xmx4096m -Dcom.sun.management.jmxremote -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:ParallelGCThreads=4 -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps -Xloggc:/data/flume/logs/gc-ad.log"[/mw_shl_code]
这样,可以方便地修改GC策略,一般由于Flume实时收集日志比较注重实时性,希望能够快速地响应,尽量减少GC导致暂停业务线程被挂起的时间,所以可以将GC设置为ParNew+CMS策略。将GC日志输出,在一定程度上能够更加方便地观察Flume Agent服务运行过程中JVM GC的详细情况,通过诊断来优化服务运行。
通常,在开始部署Flume日志收集系统时,上游L1层服务节点比较少,在L2层汇聚时使用默认的配置可能效果也会不错,但是如果L1层Flume Agent越来越多,就能看到L2层处理速度慢下来。L2层的Flume Agent服务一般会远远小于L1层Flume Agent服务数,这种情况下,如果L2层Flume Agent服务使用Avro Source,可以调大Avro接收线程数,示例如下:
[mw_shl_code=text,true]a1.sources.s1.type = avro
a1.sources.s1.bind = 10.10.1.121
a1.sources.s1.port = 44446
a1.sources.s1.threads = 8[/mw_shl_code]
上面默认情况下threads参数的值1,可以将该值调大,否则的话,L1层就会堆积日志记录,严重可能导致数据丢失。
Flume的易扩展性使得我们可以根据自己的业务特点来实现一些组件,那么我们在将实际业务逻辑掺杂进Flume中时,需要考虑是否非得必须这么做?如果这么做是否会影响Flume实时传输日志的速度和效率?
Flume作为一个轻量级的日志收集工具,个人认为最好将相对复杂的业务逻辑(尤其是需要与一些存储系统,如MySQL、Redis交互时)后移,放在Storm集群中去处理,或者自己实现的业务处理集群中,而Flume就让它去做其擅长的事情——路由消息。
当然,有些业务场景可能必须在Flume日志收集层去做,如根据原始非结构化的消息,无法控制不同类型的消息路由到不同的目的地,那么可能需要在收集层做一个简单的解析或格式化,实际上这是在Flume层做了一个简单的日志分发。无论如何,如果想在Flume层插入业务逻辑处理,尽量避免过于复杂的处理而影响整个日志传输速度,如果后端有实时推荐需求,日志中事件的实时性大大延迟,就会影响实施个性化推荐。
|