分享

逻辑回归算法的原理及实现(LR)

levycui 发表于 2016-5-24 10:03:56 [显示全部楼层] 只看大图 回帖奖励 阅读模式 关闭右栏 2 15390
本帖最后由 levycui 于 2016-5-24 10:03 编辑
问题导读:
1、什么是逻辑回归算法?
2、如何理解一元、多元逻辑归回?
3、如何使用逻辑归回模型解决问题?




逻辑回归(Logistic Regression, LR)又称为逻辑回归分析,是分类和预测算法中的一种。通过历史数据的表现对未来结果发生的概率进行预测。例如,我们可以将购买的概率设置为因变量,将用户的特征属性,例如性别,年龄,注册时间等设置为自变量。根据特征属性预测购买的概率。逻辑回归与回归分析有很多相似之处,在开始介绍逻辑回归之前我们先来看下回归分析。
37816_bf4c_17.jpg
回归分析用来描述自变量x和因变量Y之间的关系,或者说自变量X对因变量Y的影响程度,并对因变量Y进行预测。其中因变量是我们希望获得的结果,自变量是影响结果的潜在因素,自变量可以有一个,也可以有多个。一个自变量的叫做一元回归分析,超过一个自变量的叫做多元回归分析。下面是一组广告费用和曝光次数的数据,费用和曝光次数一一对应。其中曝光次数是我们希望知道的结果,费用是影响曝光次数的因素,我们将费用设置为自变量X,将曝光次数设置为因变量Y,通过一元线性回归方程和判定系数可以发现费用(X)对曝光次数(Y)的影响。
一元回归原始数据表.png

以下为一元回归线性方式,其中y是因变量,X是自变量,我们只需求出截距b0和斜率b1就可以获得费用和曝光次数之间的关系,并对曝光次数进行预测。这里我们使用最小二乘法来计算截距b0和斜率b1。最小二乘法通过最小化误差的平方和寻找数据的最佳函数匹配。
一元回归.png

下表中是使用最小二乘法计算回归方程的一些必要的计算过程。在表中最左侧的两列分别为自变量X和因变量Y,我们首先计算出自变量和因变量的均值,然后计算每一个观测值与均值的差,以及用于计算回归方程斜率b1所需的数据。
最小二乘法.png

根据表中的数据按公式计算出了回归方程的斜率b1,计算过程如下。斜率表示了自变量和因变量间的关系,斜率为正表示自变量和因变量正相关,斜率为负表示自变量和因变量负相关,斜率为0表示自变量和因变量不相关。
b1公式1.png

求得斜率b1后,按下面的公式可以求出Y轴的截距b0。
b0公式1.png

将斜率b1和截距b0代入到回归方程中,通过这个方程我们可以获得自变量和因变量的关系,费用每增加1元,曝光次数会增长7437次。以下为回归方程和图示。
一元回归代入.png
费用与曝光次数1-1024x737.png

在回归方程的图示中,还有一个R平方,这个值叫做判定系数,用来衡量回归方程是否很好的拟合了样本的数据。判定系数在0-1之间,值越大说明拟合的越好,换句话说就是自变量对因变量的解释度越高。判定系数的计算公式为SST=SSR+SSE,其中SST是总平方和,SSR是回归平方和,SSE是误差平方和。下表为计算判定系数所需三个指标的一些必要的计算过程。
R平方-1024x274.png

根据前面求得的回归平方和(SSR)和总平方和(SST)求得判定系数为0.94344。
R平方公式1.png

以上为回归方程的计算过程,在根据费用预测曝光数量的场景下,我们可以通过回归方程在已知费用的情况下计算出曝光数量。逻辑回归与回归方程相比在线性回归的基础上增加了一个逻辑函数。例如通过用户的属性和特征来判断用户最终是否会进行购买。其中购买的概率是因变量Y,用户的属性和特征是自变量X。Y值越大说明用户购买的概率越大。这里我们使用事件发生的可能性(odds)来表示购买与未购买的比值。
inodds1-1024x63.png

使用E作为购买事件,P(E)是购买的概率,P(E’)是未购买的概率,Odds(E)是事件E(购买)发生的可能性。
odds.png

Odds是一个从0到无穷的数字,Odds的值越大,表明事件发生的可能性越大。下面我们要将Odds转化为0-1之间的概率函数。首先对Odds取自然对数,得到logit方程,logit是一个范围在负无穷到正无穷的值。
logit1-1024x116.png

基于上面的logit方程,获得以下公式:
logit2-1024x58.png

其中使用π替换了公式中的P(E),π=P(E)。根据指数函数和对数规则获得以下公式:
odds1.png

并最终获得逻辑回归方程:
逻辑回归公式-1024x117.png

下面根据逻辑回归方程来计算用户购买的概率,下表是用户注册天数和是否购买的数据,其中注册天数是自变量X,是否购买是自变量Y。我们将购买标记为1,将未购买标记为0。接下来我们将在Excel中通过8个步骤计算出逻辑回归方程的斜率和截距。并通过方程预测新用户是否会购买。
一元逻辑回归数据.png
  • 第一步,使用Excel的排序功能对原始数据按因变量Y进行排序,将已购买和未购买的数据分开,使得数据特征更加明显。
  • 第二步,按照Logit方程预设斜率b1和截距b0的值,这里我们将两个值都预设为0.1。后续再通过Excel求最优解。
  • 第三步,按照logit方程,使用之前预设的斜率和截距值计算出L值。
step1.png

  • 第四步,将L值取自然对数,
  • 第五步,计算P(X)的值,P(X)为事件发生的可能性(Odds)。具体的计算步骤和过程见下图。
step2.png
  • 第六步,计算每个值的对数似然函数估计值(Log-Likelihood)。方法和过程见下图。
  • 第七步,将对数似然函数值进行汇总。
step3-1024x399.png

  • 第八步,使用Excel的规划求解功能,计算最大对数似然函数值。方法和过程见下图。设置汇总的对数似然函数值LL为最大化的目标,预设的斜率b1和截距b0是可变单元格,取消”使无约束变量为非负数”的选项。进行求解。
规划求解.png

Excel将自动求出逻辑回归方程中斜率和截距的最优解,结果如下图所示。
step4-1024x399.png

求得逻辑回归方程的斜率和截距以后,我们可以将值代入方程,获得一个注册天数与购买概率的预测模型,通过这个模型我们可以对不同注册天数(X)用户的购买概率(Y)进行预测。以下为计算过程。
step5.png
  • 第一步,输入自变量注册天数(X)的值,这里我们输入50天。
  • 第二步,将输入的X值,以及斜率和截距套入Logit方程,求出L值。
  • 第三步,对L值取自然对数。
  • 第四步,求时间发生可能性P(X)的概率值。

注册天数为50天的用户购买的概率约为17.60%。

我们将所有注册天数的值代入到购买概率预测模型中,获得了一条注册天数对购买概率影响的曲线。从曲线中可以发现,注册天数在较低和较高天数的用户购买概率较为平稳。中间天数用户的购买概率变化较大。
注册天数对购买概率的影响-1024x629.png
我们继续在上面的计算结果中增加新的自变量“年龄”。以下是原始数据的截图。现在有年龄和注册天数两个自变量和一个因变量。
多元逻辑回归数据.png
依照前面的方法计算斜率和截距的最优解,并获得逻辑回归方程,将不同的年龄和注册天数代入到方程中,获得了用户年龄和注册天数对购买的预测模型。我们通过Excel的三维图表来绘制年龄和注册天数对购买概率的影响。
年龄和注册天数对购买概率的影响-1024x669.png
从图中可以看出,购买概率随着注册天数的增加而增长,并且在相同的注册天数下,年龄较小的用户购买概率相对较高。

来源:蓝鲸网站分析博客

已有(2)人评论

跳转到指定楼层
liuzhixin137 发表于 2016-6-15 17:34:15
我有的句子都读不通顺。。。
回复

使用道具 举报

szcountryboy 发表于 2020-8-27 14:39:31
这是线性回归还是逻辑回归?
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

推荐上一条 /2 下一条