本帖最后由 fc013 于 2016-7-3 10:44 编辑
问题导读:
1.怎样计算类别的先验概率? 2.怎样计算每个词的条件概率? 3.什么是假设二分类问题?
统计词出现的次数
1/计算类别的先验概率
*输入格式:类别+文档id+文档词(切分成A,b,c)
*输出格式:类别+文档出现次数+文档出现的词的总数
2/计算每个词的条件概率
*输入格式:类别+文档id+文档词(切分成A,b,c)
*输出格式:类别+词+词的总数
3/假设二分类问题-计算概率值
* 1类别+文档出现次数+文档出现的词的总数
* 2类别+词+词的总数
* 3类别+词+log(词的总数/文档出现的词的总数),类别-log(文档出现次数/sum(文档出现次数))
* 输入格式:类别+词+词的总数
* 输出格式:"词","类别+log()值概率"+1,2+类别的先验概率
* 4/假设二分类问题-测试
* 1类别+文档出现次数+文档出现的词的总数
* 2类别+词+词的总数
* 3类别+词+log(词的总数/文档出现的词的总数),类别-log(文档出现次数/sum(文档出现次数))
*输入格式:新文档id+文档词(切分成A,b,c)
*输出格式:新文档id+类别
这个版本基本写了MapReduce的朴素贝叶斯思路--具体优化和修改以后再弄
Python版实现
R语言版调用函数
Bayes1
[mw_shl_code=java,true]package com.ml.mapreduce;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Reducer.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
/**
* 1/计算类别的先验概率
* 汇总到dict1.txt
*输入格式:类别+文档id+文档词(切分成A,b,c)
*输出格式:类别+文档出现次数+文档出现的词的总数
*/
public class Bayes1 extends Configured implements Tool {
public static enum Counter {
PARSER_ERR
}
public static class MyMap extends Mapper<LongWritable, Text, Text, Text> {
private Text mykey = new Text();// 类别id
private Text myval = new Text();// 文档id+文档长度
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String[] array = value.toString().split(",");
String[] doc=array[2].split("-");
mykey.set(array[0]);
myval.set("1"+","+doc.length);
context.write(mykey, myval);
};
}
public static class MyReduce extends Reducer<Text, Text, Text, Text> {
private Text val = new Text();
protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
// 用于计算该类别总的个数
int sum = 0;
//计算出现词的总个数
int wordsum = 0;
// 循环遍历 Interable
for (Text value : values) {
// 累加
String[] array = value.toString().split(",");
sum += Integer.parseInt(array[0]);
wordsum += Integer.parseInt(array[1]);
val.set(sum+","+wordsum);
}
context.write(key, val);
};
}
@Override
public int run(String[] args) throws Exception {
// 1 conf
Configuration conf = new Configuration();
conf.set("mapred.textoutputformat.separator", ",");// key value分隔符
// 2 create job
// Job job = new Job(conf, ModuleMapReduce.class.getSimpleName());
Job job = this.parseInputAndOutput(this, conf, args);
// 3 set job
// 3.1 set run jar class
// job.setJarByClass(ModuleReducer.class);
// 3.2 set intputformat
job.setInputFormatClass(TextInputFormat.class);
// 3.3 set input path
// FileInputFormat.addInputPath(job, new Path(args[0]));
// 3.4 set mapper
job.setMapperClass(MyMap.class);
// 3.5 set map output key/value class
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
// 3.6 set partitioner class
// job.setPartitionerClass(HashPartitioner.class);
// 3.7 set reduce number
// job.setNumReduceTasks(1);
// 3.8 set sort comparator class
// job.setSortComparatorClass(LongWritable.Comparator.class);
// 3.9 set group comparator class
// job.setGroupingComparatorClass(LongWritable.Comparator.class);
// 3.10 set combiner class
// job.setCombinerClass(null);
// 3.11 set reducer class
job.setReducerClass(MyReduce.class);
// 3.12 set output format
job.setOutputFormatClass(TextOutputFormat.class);
// 3.13 job output key/value class
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
// 3.14 set job output path
// FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 4 submit job
boolean isSuccess = job.waitForCompletion(true);
// 5 exit
// System.exit(isSuccess ? 0 : 1);
return isSuccess ? 0 : 1;
}
public Job parseInputAndOutput(Tool tool, Configuration conf, String[] args)
throws Exception {
// validate
if (args.length != 2) {
System.err.printf("Usage:%s [genneric options]<input><output>\n",
tool.getClass().getSimpleName());
ToolRunner.printGenericCommandUsage(System.err);
return null;
}
// 2 create job
Job job = new Job(conf, tool.getClass().getSimpleName());
// 3.1 set run jar class
job.setJarByClass(tool.getClass());
// 3.3 set input path
FileInputFormat.addInputPath(job, new Path(args[0]));
// 3.14 set job output path
FileOutputFormat.setOutputPath(job, new Path(args[1]));
return job;
}
public static void main(String[] args) throws Exception {
args = new String[] {
"hdfs://192.168.192.129:9000/ml/bayesTrain.txt",
// "hdfs://hadoop-00:9000/home910/liyuting/output/" };
"hdfs://192.168.192.129:9000/ml/bayes/" };
// run mapreduce
int status = ToolRunner.run(new Bayes1(), args);
// 5 exit
System.exit(status);
}
} [/mw_shl_code]
Bayes2
[mw_shl_code=java,true]import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Reducer.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
/**
* 2/计算每个词的条件概率
* 汇总到dict2.txt
*输入格式:类别+文档id+文档词(切分成A,b,c)
*输出格式:类别+词+词的总数
*/
public class Bayes2 extends Configured implements Tool {
public static enum Counter {
PARSER_ERR
}
public static class MyMap extends Mapper<LongWritable, Text, Text, Text> {
private Text mykey = new Text();//类别+词
private Text myval = new Text();//出现个数
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String[] array = value.toString().split(",");
String[] doc=array[2].split("-");
for (String str : doc) {
mykey.set(array[0]+ ","+ str);
myval.set("1");
context.write(mykey, myval);
}
};
}
public static class MyReduce extends Reducer<Text, Text, Text, Text> {
private Text val = new Text();
protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
// 用于计算每个类别里面每个词出现的总数
int sum = 0;
// 循环遍历 Interable
for (Text value : values) {
// 累加
String array = value.toString();
sum += Integer.parseInt(array);
val.set(sum + "");
}
context.write(key, val);
};
}
@Override
public int run(String[] args) throws Exception {
// 1 conf
Configuration conf = new Configuration();
conf.set("mapred.textoutputformat.separator", ",");// key value分隔符
// 2 create job
// Job job = new Job(conf, ModuleMapReduce.class.getSimpleName());
Job job = this.parseInputAndOutput(this, conf, args);
// 3 set job
// 3.1 set run jar class
// job.setJarByClass(ModuleReducer.class);
// 3.2 set intputformat
job.setInputFormatClass(TextInputFormat.class);
// 3.3 set input path
// FileInputFormat.addInputPath(job, new Path(args[0]));
// 3.4 set mapper
job.setMapperClass(MyMap.class);
// 3.5 set map output key/value class
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
// 3.6 set partitioner class
// job.setPartitionerClass(HashPartitioner.class);
// 3.7 set reduce number
// job.setNumReduceTasks(1);
// 3.8 set sort comparator class
// job.setSortComparatorClass(LongWritable.Comparator.class);
// 3.9 set group comparator class
// job.setGroupingComparatorClass(LongWritable.Comparator.class);
// 3.10 set combiner class
// job.setCombinerClass(null);
// 3.11 set reducer class
job.setReducerClass(MyReduce.class);
// 3.12 set output format
job.setOutputFormatClass(TextOutputFormat.class);
// 3.13 job output key/value class
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
// 3.14 set job output path
// FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 4 submit job
boolean isSuccess = job.waitForCompletion(true);
// 5 exit
// System.exit(isSuccess ? 0 : 1);
return isSuccess ? 0 : 1;
}
public Job parseInputAndOutput(Tool tool, Configuration conf, String[] args)
throws Exception {
// validate
if (args.length != 2) {
System.err.printf("Usage:%s [genneric options]<input><output>\n",
tool.getClass().getSimpleName());
ToolRunner.printGenericCommandUsage(System.err);
return null;
}
// 2 create job
Job job = new Job(conf, tool.getClass().getSimpleName());
// 3.1 set run jar class
job.setJarByClass(tool.getClass());
// 3.3 set input path
FileInputFormat.addInputPath(job, new Path(args[0]));
// 3.14 set job output path
FileOutputFormat.setOutputPath(job, new Path(args[1]));
return job;
}
public static void main(String[] args) throws Exception {
args = new String[] {
"hdfs://192.168.192.129:9000/ml/bayesTrain.txt",
// "hdfs://hadoop-00:9000/home910/liyuting/output/" };
"hdfs://192.168.192.129:9000/ml/bayes/pword/" };
// run mapreduce
int status = ToolRunner.run(new Bayes2(), args);
// 5 exit
System.exit(status);
}
}
[/mw_shl_code]
Bayes3
[mw_shl_code=java,true]package com.ml.mapreduce;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Reducer.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
/**
* 3/假设二分类问题-计算概率值
* 1类别+文档出现次数+文档出现的词的总数
* 2类别+词+词的总数
* 3类别+词+log(词的总数/文档出现的词的总数),类别-log(文档出现次数/sum(文档出现次数))
*
* 输入格式:类别+词+词的总数
* 输出格式:"词","类别+log()值概率"+1,2+类别的先验概率
*/
public class Bayes3 extends Configured implements Tool {
public static enum Counter {
PARSER_ERR
}
public static class MyMap extends Mapper<LongWritable, Text, Text, Text> {
private Text mykey = new Text();// 类别+词
private Text myval = new Text();// 出现个数
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
BufferedReader br = null;
//获得当前作业的DistributedCache相关文件
Path[] distributePaths = DistributedCache.getLocalCacheFiles(context.getConfiguration());
String lines = null;
String[] class1 = {"0","0"};
String[] class0 = {"0","0"};
for(Path p : distributePaths){
if(p.getParent().toString().endsWith("bayes")){
//读缓存文件,并放到mem中
br = new BufferedReader(new FileReader(p.toString()));
while(null!=(lines=br.readLine())){
String[] pall= lines.split(",");
if (pall[0].equals("1")) {
class1[0]=pall[1];
class1[1]=pall[2];
}else {
class0[0]=pall[1];
class0[1]=pall[2];
}
}
}
}
String[] array = value.toString().split(",");
Double plog=0.0;
if (array[0].equals("1")) {
mykey.set(array[1]);// 词
plog=Math.log(Double.parseDouble(array[2])/Double.parseDouble(class1[1]));
myval.set(array[0]+","+plog);// 类别+log概率
context.write(mykey, myval);
}else {
mykey.set(array[1]);// 词
plog=Math.log(Double.parseDouble(array[2])/Double.parseDouble(class0[1]));
myval.set(array[0]+","+plog);// 类别+log概率
context.write(mykey, myval);
}
};
}
public static class MyReduce extends Reducer<Text, Text, Text, Text> {
private Text val = new Text();
protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
String vals="tab";
for (Text value : values) {
// 累加
vals=vals+","+value.toString();
}
val.set(vals);
context.write(key, val);
};
}
@Override
public int run(String[] args) throws Exception {
// 1 conf
Configuration conf = new Configuration();
conf.set("mapred.textoutputformat.separator", ",");// key value分隔符
DistributedCache.addCacheFile(new Path(args[2]).toUri(), conf);//为该job添加缓存文件
// 2 create job
// Job job = new Job(conf, ModuleMapReduce.class.getSimpleName());
Job job = this.parseInputAndOutput(this, conf, args);
// 3 set job
// 3.1 set run jar class
// job.setJarByClass(ModuleReducer.class);
// 3.2 set intputformat
job.setInputFormatClass(TextInputFormat.class);
// 3.3 set input path
// FileInputFormat.addInputPath(job, new Path(args[0]));
// 3.4 set mapper
job.setMapperClass(MyMap.class);
// 3.5 set map output key/value class
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
// 3.6 set partitioner class
// job.setPartitionerClass(HashPartitioner.class);
// 3.7 set reduce number
// job.setNumReduceTasks(0);
// 3.8 set sort comparator class
// job.setSortComparatorClass(LongWritable.Comparator.class);
// 3.9 set group comparator class
// job.setGroupingComparatorClass(LongWritable.Comparator.class);
// 3.10 set combiner class
// job.setCombinerClass(null);
// 3.11 set reducer class
job.setReducerClass(MyReduce.class);
// 3.12 set output format
job.setOutputFormatClass(TextOutputFormat.class);
// 3.13 job output key/value class
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
// 3.14 set job output path
// FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 4 submit job
boolean isSuccess = job.waitForCompletion(true);
// 5 exit
// System.exit(isSuccess ? 0 : 1);
return isSuccess ? 0 : 1;
}
public Job parseInputAndOutput(Tool tool, Configuration conf, String[] args)
throws Exception {
// validate
// if (args.length != 2) {
// System.err.printf("Usage:%s [genneric options]<input><output>\n",
// tool.getClass().getSimpleName());
// ToolRunner.printGenericCommandUsage(System.err);
// return null;
// }
// 2 create job
Job job = new Job(conf, tool.getClass().getSimpleName());
// 3.1 set run jar class
job.setJarByClass(tool.getClass());
// 3.3 set input path
FileInputFormat.addInputPath(job, new Path(args[0]));
// 3.14 set job output path
FileOutputFormat.setOutputPath(job, new Path(args[1]));
return job;
}
public static void main(String[] args) throws Exception {
args = new String[] {
"hdfs://192.168.192.129:9000/ml/bayes/pword/part-r-00000",
// "hdfs://hadoop-00:9000/home910/liyuting/output/" };
"hdfs://192.168.192.129:9000/ml/bayes/pall/",
"hdfs://192.168.192.129:9000/ml/bayes/part-r-00000"};
// run mapreduce
int status = ToolRunner.run(new Bayes3(), args);
// 5 exit
System.exit(status);
}
} [/mw_shl_code]
Bayes4
[mw_shl_code=java,true]package com.ml.mapreduce;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Reducer.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
/**
* 4/假设二分类问题-测试
* 1类别+文档出现次数+文档出现的词的总数
* 2类别+词+词的总数
* 3类别+词+log(词的总数/文档出现的词的总数),类别-log(文档出现次数/sum(文档出现次数))
*
*输入格式:新文档id+文档词(切分成A,b,c)
*输出格式:新文档id+类别
*/
public class Bayes4 extends Configured implements Tool {
public static enum Counter {
PARSER_ERR
}
public static class MyMap extends Mapper<LongWritable, Text, Text, Text> {
private Text mykey = new Text();//类别+词
private Text myval = new Text();//出现个数
Map zidianString=new HashMap();//key是词 value是概率值-假设字典可以读到内存中//不能的话切分读取
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
BufferedReader br = null;
//获得当前作业的DistributedCache相关文件
Path[] distributePaths = DistributedCache.getLocalCacheFiles(context.getConfiguration());
String lines = null;
for(Path p : distributePaths){
if(p.getParent().toString().endsWith("pall")){
//读缓存文件,并放到mem中
br = new BufferedReader(new FileReader(p.toString()));
while(null!=(lines=br.readLine())){
String[] pall= lines.split(",");
if (pall.length>4) {
if (pall[2].equals("1")) {
zidianString.put(pall[0], pall[2]+","+pall[3]+","+pall[4]+","+pall[5]);
}else {
zidianString.put(pall[0], pall[4]+","+pall[5]+","+pall[2]+","+pall[3]);
}
}else {
if (pall[2].equals("1")) {
zidianString.put(pall[0], pall[2]+","+pall[3]+","+"0"+","+"0.0");
}else {
zidianString.put(pall[0], "1"+","+"0.0"+","+pall[2]+","+pall[3]);
}
}
}
}
}
String[] array = value.toString().split(",");
String[] doc=array[1].split("-");
for (String str : doc) {
if (zidianString.containsKey(str)) {
String[] kk=zidianString.get(str).toString().split(",");//类别+概率
mykey.set(array[0]);//文档id
myval.set(kk[0]+","+kk[1]+","+kk[2]+","+kk[3]);//类别+log概率
context.write(mykey, myval);
}
}
};
}
public static class MyReduce extends Reducer<Text, Text, Text, Text> {
private Text val = new Text();
protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
// 用于计算每个类别里面词的概率
Double sum=0.5;//类别1的先验概率 --需要提前算好0-0这里可以考虑读入--等有空再修改
Double sum2=0.5;//类别0的先验概率
// 循环遍历 Interable
for (Text value : values) {
// 累加
String[] array = value.toString().split(",");
sum += Double.parseDouble(array[1]);//似然概率
sum2 += Double.parseDouble(array[3]);//似然概率
}
if (sum>sum2) {
val.set("类别1");
}else {
val.set("类别0");
}
context.write(key, val);
};
}
@Override
public int run(String[] args) throws Exception {
// 1 conf
Configuration conf = new Configuration();
conf.set("mapred.textoutputformat.separator", ",");// key value分隔符
DistributedCache.addCacheFile(new Path(args[2]).toUri(), conf);//为该job添加缓存文件
// 2 create job
// Job job = new Job(conf, ModuleMapReduce.class.getSimpleName());
Job job = this.parseInputAndOutput(this, conf, args);
// 3 set job
// 3.1 set run jar class
// job.setJarByClass(ModuleReducer.class);
// 3.2 set intputformat
job.setInputFormatClass(TextInputFormat.class);
// 3.3 set input path
// FileInputFormat.addInputPath(job, new Path(args[0]));
// 3.4 set mapper
job.setMapperClass(MyMap.class);
// 3.5 set map output key/value class
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
// 3.6 set partitioner class
// job.setPartitionerClass(HashPartitioner.class);
// 3.7 set reduce number
// job.setNumReduceTasks(0);
// 3.8 set sort comparator class
// job.setSortComparatorClass(LongWritable.Comparator.class);
// 3.9 set group comparator class
// job.setGroupingComparatorClass(LongWritable.Comparator.class);
// 3.10 set combiner class
// job.setCombinerClass(null);
// 3.11 set reducer class
job.setReducerClass(MyReduce.class);
// 3.12 set output format
job.setOutputFormatClass(TextOutputFormat.class);
// 3.13 job output key/value class
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
// 3.14 set job output path
// FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 4 submit job
boolean isSuccess = job.waitForCompletion(true);
// 5 exit
// System.exit(isSuccess ? 0 : 1);
return isSuccess ? 0 : 1;
}
public Job parseInputAndOutput(Tool tool, Configuration conf, String[] args)
throws Exception {
// validate
// if (args.length != 2) {
// System.err.printf("Usage:%s [genneric options]<input><output>\n",
// tool.getClass().getSimpleName());
// ToolRunner.printGenericCommandUsage(System.err);
// return null;
// }
// 2 create job
Job job = new Job(conf, tool.getClass().getSimpleName());
// 3.1 set run jar class
job.setJarByClass(tool.getClass());
// 3.3 set input path
FileInputFormat.addInputPath(job, new Path(args[0]));
// 3.14 set job output path
FileOutputFormat.setOutputPath(job, new Path(args[1]));
return job;
}
public static void main(String[] args) throws Exception {
args = new String[] {
"hdfs://192.168.192.129:9000/ml/test.txt",
// "hdfs://hadoop-00:9000/home910/liyuting/output/" };
"hdfs://192.168.192.129:9000/ml/bayes/result/",
"hdfs://192.168.192.129:9000/ml/bayes/pall/part-r-00000"};
// run mapreduce
int status = ToolRunner.run(new Bayes4(), args);
// 5 exit
System.exit(status);
}
}
[/mw_shl_code]
来自:余音丶未散
|
|