分享

spark查询不了hive的orc格式的表

linbowei 发表于 2016-9-5 18:02:35 [显示全部楼层] 回帖奖励 阅读模式 关闭右栏 9 38038
hive上的表t2,信息如下:
spark-sql> desc formatted t2;
OK
16/09/05 09:58:57 WARN LazyStruct: Extra bytes detected at the end of the row! Ignoring similar problems.
# col_name                data_type               comment            
         
id                      int                                         
name                    string                                      
         
# Partition Information         
# col_name                data_type               comment            
         
country                 string                                      
state                   string                                      
         
# Detailed Table Information         
Database:               test                     
Owner:                  hadoop                  
CreateTime:             Fri Aug 12 08:00:25 GMT 2016     
LastAccessTime:         UNKNOWN                  
Protect Mode:           None                     
Retention:              0                        
Location:               hdfs://192.168.42.128:9000/user/hive/warehouse/test.db/t2     
Table Type:             MANAGED_TABLE            
Table Parameters:         
    transactional           true               
    transient_lastDdlTime    1470988825         
         
# Storage Information         
SerDe Library:          org.apache.hadoop.hive.ql.io.orc.OrcSerde     
InputFormat:            org.apache.hadoop.hive.ql.io.orc.OrcInputFormat     
OutputFormat:           org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat     
Compressed:             No                       
Num Buckets:            8                        
Bucket Columns:         [id]                     
Sort Columns:           []                       
Storage Desc Params:         
    serialization.format    1  

在sparksql查询select * from t2;报如下错误:
spark-sql> select * from t2;
16/09/05 09:59:13 ERROR SparkSQLDriver: Failed in [select * from t2]
java.lang.RuntimeException: serious problem
    at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat.generateSplitsInfo(OrcInputFormat.java:1021)
    at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat.getSplits(OrcInputFormat.java:1048)
    at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:207)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66)
    at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
    at scala.collection.immutable.List.foreach(List.scala:318)
    at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
    at scala.collection.AbstractTraversable.map(Traversable.scala:105)
    at org.apache.spark.rdd.UnionRDD.getPartitions(UnionRDD.scala:66)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1921)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:909)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:108)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:310)
    at org.apache.spark.rdd.RDD.collect(RDD.scala:908)
    at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:177)
    at org.apache.spark.sql.hive.HiveContext$QueryExecution.stringResult(HiveContext.scala:587)
    at org.apache.spark.sql.hive.thriftserver.SparkSQLDriver.run(SparkSQLDriver.scala:63)
    at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.processCmd(SparkSQLCLIDriver.scala:308)
    at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:376)
    at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver$.main(SparkSQLCLIDriver.scala:226)
    at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.main(SparkSQLCLIDriver.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:606)
    at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:674)
    at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
    at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
    at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:120)
    at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.util.concurrent.ExecutionException: java.lang.NumberFormatException: For input string: "0000005_0000"
    at java.util.concurrent.FutureTask.report(FutureTask.java:122)
    at java.util.concurrent.FutureTask.get(FutureTask.java:188)
    at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat.generateSplitsInfo(OrcInputFormat.java:998)
    ... 55 more
Caused by: java.lang.NumberFormatException: For input string: "0000005_0000"
    at java.lang.NumberFormatException.forInputString(NumberFormatException.java:65)
    at java.lang.Long.parseLong(Long.java:441)
    at java.lang.Long.parseLong(Long.java:483)
    at org.apache.hadoop.hive.ql.io.AcidUtils.parseDelta(AcidUtils.java:310)
    at org.apache.hadoop.hive.ql.io.AcidUtils.getAcidState(AcidUtils.java:379)
    at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$FileGenerator.call(OrcInputFormat.java:634)
    at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$FileGenerator.call(OrcInputFormat.java:620)
    at java.util.concurrent.FutureTask.run(FutureTask.java:262)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
    at java.lang.Thread.run(Thread.java:745)
java.lang.RuntimeException: serious problem
    at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat.generateSplitsInfo(OrcInputFormat.java:1021)
    at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat.getSplits(OrcInputFormat.java:1048)
    at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:207)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66)
    at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
    at scala.collection.immutable.List.foreach(List.scala:318)
    at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
    at scala.collection.AbstractTraversable.map(Traversable.scala:105)
    at org.apache.spark.rdd.UnionRDD.getPartitions(UnionRDD.scala:66)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1921)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:909)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:108)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:310)
    at org.apache.spark.rdd.RDD.collect(RDD.scala:908)
    at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:177)
    at org.apache.spark.sql.hive.HiveContext$QueryExecution.stringResult(HiveContext.scala:587)
    at org.apache.spark.sql.hive.thriftserver.SparkSQLDriver.run(SparkSQLDriver.scala:63)
    at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.processCmd(SparkSQLCLIDriver.scala:308)
    at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:376)
    at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver$.main(SparkSQLCLIDriver.scala:226)
    at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.main(SparkSQLCLIDriver.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:606)
    at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:674)
    at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
    at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
    at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:120)
    at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.util.concurrent.ExecutionException: java.lang.NumberFormatException: For input string: "0000005_0000"
    at java.util.concurrent.FutureTask.report(FutureTask.java:122)
    at java.util.concurrent.FutureTask.get(FutureTask.java:188)
    at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat.generateSplitsInfo(OrcInputFormat.java:998)
    ... 55 more
Caused by: java.lang.NumberFormatException: For input string: "0000005_0000"
    at java.lang.NumberFormatException.forInputString(NumberFormatException.java:65)
    at java.lang.Long.parseLong(Long.java:441)
    at java.lang.Long.parseLong(Long.java:483)
    at org.apache.hadoop.hive.ql.io.AcidUtils.parseDelta(AcidUtils.java:310)
    at org.apache.hadoop.hive.ql.io.AcidUtils.getAcidState(AcidUtils.java:379)
    at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$FileGenerator.call(OrcInputFormat.java:634)
    at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$FileGenerator.call(OrcInputFormat.java:620)
    at java.util.concurrent.FutureTask.run(FutureTask.java:262)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
    at java.lang.Thread.run(Thread.java:745)
各位熟悉sparksql的大神,这个要如何解决?

已有(9)人评论

跳转到指定楼层
arsenduan 发表于 2016-9-5 19:23:46
hive.fetch.task.conversion=none
楼主尝试设置下这个参数

回复

使用道具 举报

einhep 发表于 2016-9-5 19:25:14
这个参数0000005_0000,是哪里的?hive里面的数据

回复

使用道具 举报

NEOGX 发表于 2016-9-5 19:29:11
这个应该是可以的,如果英文不错的话,可以参考这篇文章

http://zh.hortonworks.com/hadoop ... -from-apache-spark/

回复

使用道具 举报

linbowei 发表于 2016-9-6 08:54:06
arsenduan 发表于 2016-9-5 19:23
hive.fetch.task.conversion=none
楼主尝试设置下这个参数

设置了,还是报一样的错误

回复

使用道具 举报

linbowei 发表于 2016-9-6 08:55:26
NEOGX 发表于 2016-9-5 19:29
这个应该是可以的,如果英文不错的话,可以参考这篇文章

http://zh.hortonworks.com/hadoop-tutorial/us ...

看了,文章说的是用spark-shell去调度,不是用spark-sql,而且文章是直接去读数据文件,不是直接用sql语句去读表

回复

使用道具 举报

tntzbzc 发表于 2016-9-6 13:03:41
Caused by: java.lang.NumberFormatException: For input string: "0000005_0000"
这个应该是数据类型不同造成的异常。
"0000005_0000"是字符串,但是对应的字段设置的却是Number,所以造成这个错误

回复

使用道具 举报

linbowei 发表于 2016-9-6 14:09:35
tntzbzc 发表于 2016-9-6 13:03
Caused by: java.lang.NumberFormatException: For input string: "0000005_0000"
这个应该是数据类型不同 ...

hive> desc t2;
OK
id                      int                                         
name                    string                                      
country                 string                                      
state                   string                                      
         
# Partition Information         
# col_name                data_type               comment            
         
country                 string                                      
state                   string                                      
Time taken: 0.15 seconds, Fetched: 10 row(s)
hive> select * from t2;
OK
3    王五    CA    BB
4    赵六    CA    BC
5    刘    DD    DD
1    张    US    CA
Time taken: 0.176 seconds, Fetched: 4 row(s)
回复

使用道具 举报

arsenduan 发表于 2016-9-7 17:56:01
linbowei 发表于 2016-9-6 14:09
hive> desc t2;
OK
id                      int                                         

楼主可以创建一个简单的表测试下。
问题原因之一应该这个输入串
For input string: "0000005_0000"

回复

使用道具 举报

user2 发表于 2017-11-29 10:02:03
楼主 问题解决了吗?。希望能分享一下解决办法,期待回复
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

推荐上一条 /2 下一条