Field Data cache 对搜索结果做排序或者聚合操作,需要将倒排索引里的数据进行解析,然后进行一次倒排。在有大量排序、数据聚合的应用场景,可以说field data cache是性能和稳定性的杀手。这个过程非常耗费时间,因此ES2.0以前的版本主要依赖这个cache缓存已经计算过的数据,提升性能。但是由于heap空间有限,当遇到用户对海量数据做计算的时候,就很容易导致heap吃紧,集群频繁GC,根本无法完成计算过程。ES2.0以后,正式默认启用Doc Values特性(1.x需要手动更改mapping开启),将field data在indexing time构建在磁盘上,经过一系列优化,可以达到比之前采用field data cache机制更好的性能。因此需要限制对field data cache的使用,最好是完全不用,可以极大释放heap压力。这里需要注意的是,排序、聚合字段必须为not analyzed。设想如果有一个字段是analyzed过的,排序的实际对象其实是词典,在数据量很大情况下这种情况非常致命。